
©

©

',p.i. 4

o

©

NASA-C_-2_;I ;':I

DEPARTMENT OF MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

/ ,

METHODOLOGY FOR SENSITIVITY ANALYSIS,

APPROXIMATE ANALYSIS, AND DESIGN OPTIMIZATION IN

CFD FOR MULTIDISCIPLINARY APPLICATIONS

By

Arthur C. Taylor III, Principal Investigator

Gene W. Hou, Co-Principal Investigator

Final Report

For the period ended December 31, 1995

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-I-1265

Dr. Henry E. Jones, Technical Monitor
FLDMAD-Aeroacoustics Branch

August 1996



DEPARTMENT OF MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

METHODOLOGY FOR SENSITIVITY ANALYSIS,

APPROXIMATE ANALYSIS, AND DESIGN OPTIMIZATION IN

CFD FOR MULTIDISCIPLINARY APPLICATIONS

By

Arthur C. Taylor III, Principal Investigator

Gene W. Hou, Co-Principal Investigator

Final Report

For the period ended December 31, 1995

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-l-1265

Dr. Henry E. Jones, Technical Monitor
FLDMAD-Aeroacoustics Branch

Submitted by the

Old Dominion University Research Foundation

P.O. Box 6369

Norfolk, VA 23508-0369

August 1996



Overview

This final report, for grant NAG-l-1265, represents also the final approved Ph.D. dissertation

of Dr. Vamshi Mohan Korivi. Although many additional things were accomplished through

the several-year span of this grant, this report represents well the culmination of effort and

accomplishments of this multi-year project.

Dr. Arthur C. Taylor III

Associate Professor



ABSTRACT

AERODYNAMIC DESIGN OPTIMIZATION WITH

CONSISTENTLY DISCRETE SENSITIVITY DERIVATIVES

VIA THE INCREMENTAL ITERATIVE METHOD

by

Vamshi M. Korivi

Old Dominion University, 1995

Director: Dr. A. C. Taylor III

An incremental iterative formulation together with the well-known spatially split

approximate-factorization "algorithm, is presented for solving the large, sparse systems

of linear equations that are associated with aerodynamic sensitivity analysis. This

formulation is also known as the "delta" or "correction" form. For the smaller two

dimensional problems, a direct method can be applied to solve these linear equations

in either the standard or the incremental form, in which case the two are equivalent.

However, iterative methods are needed for larger two-dimensional and three dimensional

applications because direct methods require more computer memory than is currently

available. Iterative methods for solving these equations in the standard form are generally

unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome

when these equations are cast in the incremental form. The methodology is successfully

implemented and tested using an upwind cell-centered finite-volume formulation applied

in two dimensions to the thin-layer Navier-Stokes equations for external flow over an

airfoil. In three dimensions this methodology is demonstrated with a marching-solution

algorithm for the Euler equations to calculate supersonic flow over the High-Speed

Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with



the incrementaliterative methodfrom a marchingEuler code are used in a design-

improvementstudy of the HSCT configurationthat involves thickness,camber, and

planform designvariables.
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Chapter 1

INTRODUCTION

Rapid advances in computer technology have enabled fluid-flow simulations around

full aircraft configurations with computational fluid dynamics (CFD). Numerical simula-

tion of complicated external and internal flows has become a routine practice, replacing

the expensive alternative of wind-tunnel testing. Successes that are mainly attributed

to the rapid development of CFD include numerical modeling of the governing fluid

physics, the ability to define the surfaces of a complicated geometry with volume-grid

generation around these surfaces, and solution of the system of equations with efficient

iterative solvers. Advanced research CFD codes such as CFL3D [1] and TLNS3D [2]

are representative examples of the current state of the art in CFD.

The emerging field of CFD has reached a mature stage in which these codes can be

employed in a multidisciplinary environment. In his review paper, Jameson [3] concluded

that the following challenges remain to be met in the area of CFD: development of

accurate higher order schemes; development of better schemes for capturing shocks

and internal discontinuities; grid adaptation; use of unstructured grids to easily model

the flow over and through complicated configurations; turbulence modeling; and design

optimization.

The National Aeronautics and Space Administration (NASA) research efforts to

ingorporate high-fidelity single-discipline codes (including advanced CFD codes) in a

multidisciplinary design procedure include the High-Speed Airframe Integration Research

(HiSAIR) project [4] and the Computational Aerosciences (CAS) project of the High
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Performance Computing and Communications (HPCC) program [5]. The HiSAIR

project is primarily focused on High-Speed Civil Transport (HSCT) design activity,

with the goal of developing advanced methodology and a computational environment

for multidisciplinary analysis and design optimization. The HSCT is one application

of the CAS project. These programs are committed to multidisciplinary design via a

methodology known as sensitivity analysis (SA).

In reality, the interaction of many disciplines (including aerodynamics) must be con-

sidered in predicting the performance of an entire aircraft, and a methodology is needed

to account for this interaction between the various disciplines. For example, the design

of an aircraft wing involves the interaction of several disciplines (e.g., aerodynamics,

structures, controls, and materials). Sobieski [6] (a pioneer in the development of the

multidisciplinary approach) formulated a gradient-based multidisciplinary design (MdD)

procedure based on the "divide and conquer" approach, where many disciplines are

involved in the design process. This approach utilizes the required function response(s)

of interest for each individual discipline, as well as the sensitivity derivatives (SD's)

from each individual discipline (i.e., the derivatives of each individual discipline's

output functions with respect to its input (design) variables). Sobieski [7] addressed

the need to obtain SD's from advanced CFD codes, so that these codes can be used in

a multidisciplinary design environment; furthermore, he derived the general individual-

discipline discrete sensitivity equation, which is based on the implicit function theorem.

1.1 Literature Review

An SA is defined as the calculation of slopes, known as SD's, which are derivatives

of the response(s) (output function(s)) of a particular system of interest taken with respect

to the design variable(s) of interest. For the designer, an accurate knowledge of the SD's

of a particular system under consideration can be used in many ways (e.g., for function

approximation, trade-off design, and multidisciplinary design optimization (MDO)).
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1.1.1 Sensitivity Analysis

Several procedures exist whereby the SD's can be obtained from advanced CFD

codes. For example, these SD's can be calculated by using finite differencing, by

hand differentiation, or by using symbolic manipulators, such as MACSYMA [8].

Alternatively, an automatic differentiation tool such as ADIFOR [9] can be used. A

general yet conceptually simple method for computing aerodynamic SD's is the method

of "brute force" finite differencing. For this method, under the assumption that forward

finite-difference approximations are used, the CFD flow-analysis code is used to generate

a single converged flow solution for a slightly perturbed value of each design variable

for which SD's are required. Although this method of computing the SD's is used [10],

there are several disadvantages:

1. Extremely high computational costs, particularly for three dimensions, because the

number of flow analyses required in a typical design problem becomes large as the

number of design variables becomes large.

2. Lack of robustness and accuracy because of difficulties that are sometimes associated

with the selection of a proper numerical step size.

The step size can contribute to two types of errors in the finite-differencing method:

approximation/truncation error and condition error. Truncation error is the difference

between the exact value and the calculated value of the function. Condition error is due

to computer round-off error that is associated with the subtraction of large numbers that are

nearly equal. A trial-and-error approach is usually taken to determine a suitable step size

when finite differencing is used; this approach can require many function evaluations. A

method known as the finite-difference algorithm is outlined in Ref. [ 11] to automatically

calculate an optimum step size. The finite-difference algorithm was extended in Ref.

[12] to functions that are governed by matrix equations. This algorithm has not yet been

demonstrated for cases in which the functions are calculated iteratively.
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As an alternate approachthat is typically less costly than finite differencing,

aerodynamicSD's can (in principle) be computed by direct differentiation of the

governingequationsthat control the fluid flow. Two approachesare commonly used:

the discrete approach and the continuous approach. With the discrete approach,

differentiation(with respectto the designvariables)is of thediscretizedflow equations:

with the continuousapproach,differentiationis of the continuousgoverningequations

using material derivativesor generalizedcalculusof variations. Differentiation via the

continuousapproachyields linear differential equationsfor the SD's; typically these

differential sensitivity equationsmust be discretizedand solved numerically for the

required SD's. The discreteand continuousmethodscan yield identical SD's if the

goveming equationsare self-adjoint (which is not the casefor the Euler and Navier-

Stokesequations)and if the discretizationthat is selectedis the samefor bothmethods:

otherwise,the SD's obtainedvia the continuousmethodmay not beconsistentwith the

discretefunction solutions.However,the advantageof usingthe continuousformulation

is that offlexibili_; (i.e., the governingequationsand thediscretizationusedfor the SA

can be different from that usedfor the flow analysis). An excellent review article by

Tayloret al. [13] providesanoverviewof researchactivitiesin theefficientandaccurate

calculationof SD's with advancedCFD codes.

Earlyworksby Pironneau[14]usedthecontinuousformulationappliedto theNavier-

Stokesequationsto derivesensitivityequationsfor incompressiblelow-Reynolds-number

flow. Angrand[15] used a similar approach for flow over an airfoil using the irrotational

flow (potential flow) approximation. Yates [16] and Yates and Desmarais [17] used

a continuous formulation applied to the equations of linear aerodynamic theory and

successfully obtained SD's from the integral-equation formulation of these governing

equations in two dimensions. Extension of this method to three-dimensional (3-D)

flow with the Navier-Stokes equations (for flow analysis and to calculate aerodynamic

sensitivity derivatives) is possible, in principle. The integral-equation representation of



the governingequationshasadvantagesover conventionalfinite-differenceand finite-

volume methods,and these advantagescarry over to the solution of the resulting

sensitivity equations.

Jameson[18, 19] and Jamesonand Reuther [20] appliedcontrol theory to airfoil

and wing design. They used a continuous formulation together with the adjoint-

variable approachto obtain the requiredgradient information. Initially, their method

wassuccessfullyimplementedwith conformalmappingfor potentialflow; morerecently,

they haveextendedit to inviscid flow in two andthreedimensionswith a finite-volume

discretization. With this method,2 + m flow analyses are required per design cycle,

where two analyses are required to solve the flow equations and the adjoint equations

(one analysis each) and m is the number of flow analyses required in the line-search

procedure. The flow equations and the adjoint equations are solved efficiently by using

the multigrid procedure in incremental iterative form.

Frank and Shubin [21], Shubin and Frank [22] and Shubin [23] obtained aerodynamic

sensitivity equations using both the discrete and the continuous approaches. These

studies indicates that consistent, discrete SD's should be used in aerodynamic design

optimization; failure to do so can result in a considerable slowdown or complete failure

of the optimization procedure. (Recall that the continuous method generally does not

yield consistent, discrete SD's.)

With a continuous formulation, Borgaard and Bums [24] and Borgaard et al. [ 25]

derived aerodynamic sensitivity equations in two dimensions by directly differentiating

the Euler equations and the accompanying boundary conditions. Existing CFD software

was easily modified to obtain the SD's with this approach. With this method, the nonlinear

flow equations and linear flow-sensitivity equations were solved with the same solution

procedure. However, in contrast to Frank and Shubin [21], Borgaard et al. concluded

that judicious use of inconsistent, discrete SD's can sometimes result in successful

optimization for cases in which the use of the consistent, discrete SD's sometimes fails.



With a continuousformulation,IbrahimandBaysal[26] derivedsensitivityequations

in adjoint form and boundary(transversality)equationsfor the quasi-one-dimensional

(quasi-l-D) Euler equations. This approachdiffers from other methods in that a

perturbationtechniqueis appliedwith a variation formulation to find the required gradient

information. The resulting adjoint sensitivity equations and flow-analysis equations are

solved with the same solution procedure because the character of these equations is

similar. The method is applied to the optimization of a quasi-1-D nozzle, that includes

a normal shock within the nozzle.

Elbanna and Carlson [27] applied the discrete sensitivity approach to calculate

aerodynamic sensitivity coefficients in the transonic and supersonic flight regimes, where

the governing equations of fluid flow considered are the transonic small-disturbance

equations. Later, this approach is applied to the 3-D full-potential equation to compute

aerodynamic sensitivity coefficients for a wing in a transonic flow. In order to avoid the

excessive memory of a direct-solver approach, they used a conjugate-gradient iterative

method to solve the very large system of linear sensitivity equations that is associated

with 3-D flow. Elbanna and Carlson [28] used a symbolic manipulator, MACSYMA [8],

to differentiate various parts of the 3-D full-potential flow code and successfully obtain

these aerodynamic SD.

Baysal and Eleshaky [29], Baysal et al. [30], Burgreen et al. [31], and Eleshaky and

Baysal [32] applied the discrete sensitivity approach to the steady Euler equations and

later extended the approach to the thin-layer Navier-Stokes (TLNS) equations; results

were presented for two-dimensional (2-D) flow. Taylor et al. [33, 34] and Hou et

al. [35] also derived discrete sensitivity equations for the Euler and TLNS equations,

with results given for 2-D flow. This discrete method results in very large systems of

linear sensitivity equations that must be solved to obtain the SD's of interest. In Refs.

27 through 39, the sensitivity equations are solved in "standard" (i.e., nonincremental)

form. Furthermore, in these references, a direct-solver method is applied to solve these



equations:the singleexceptionis Ref. [39], wherea hybrid direct/iterativeapproachis

adoptedfor an isolatedairfoil problem.

Eleshaky and Baysal [40] proposeda domain decompositiontechniqueto solve

the discrete sensitivity equations for large 2-D and 3-D problems. This method

decomposesthe large computationaldomain into subdomains:the sensitivity equations

for the interior cells and the sensitivity equationsfor boundary cells that couple

the subdomainsare iteratively solved with a preconditionedconjugategradient (CG)

technique.Thefeasibility of computingtheSD's ondecomposedcomputationaldomains

in two dimensionswasdemonstratedon a sampleairfoil problemby LacasseandBaysal

[41]; in threedimensionsit wasdemonstratedon an axisymmetricnacelleconfiguration

by Eleshakyand Baysal [40].

Korivi et al. [42] andNewmanet al. [43] proposedtheincrementaliterativemethod

(I/M) to solve the sensitivity equationto calculateconsistent,discreteSD's. With this

approach,approximationsof conveniencecan be introducedinto the coefficient matrix

operatorwithout affecting the accuracyof the SD. The IIM enablesthe samesolution

strategythat is usedto solve theequationsof the flow analysisto be usedto solve the

flow sensitivityequations.This IIM strategywasfirst implementedin two dimensionsfor

theTLNS equationswith both thedirect-differentiationandadjoint-variableapproaches;

theprocedurewasdemonstratedfor two airfoil problems:low-Reynolds-numberlaminar

flow andhigh-Reynolds-numberturbulentflow. In their work, thefailure to differentiate

theturbulencemodelingterms(becauseof theircomplexity)resultedin inaccuratediscrete

SD's. Later, the IIM strategywas implementedin a 3-D marchingEuler code to obtain

SD's for severalnongeometricdesignvariables[44].

ChattopadhyaandPagaldipti[45] obtainedquasi-analytical(discrete)SD's from the

3D parabolizedNavier-Stokesequationsand demonstratedthe methodfor flow over a

deltawing. In their study,grid sensitivitytermswerefirst calculatedvia finitedifferences;

in a later study[46], theywerecomputedwith a quasi-analyticalmethod.Huddlestonet
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(IIM) to solve the sensitivity equationto calculateconsistent,discreteSD's. With this

approach,approximationsof conveniencecan be introducedinto the coefficient matrix

operatorwithout affecting the accuracyof the SD. The IIM enablesthe samesolution

strategythat is usedto solve the equationsof the flow analysisto be usedto solve the

flow sensitivityequations.This IIM strategywasfirst implementedin two dimensionsfor

theTLNS equationswith both the direct-differentiationandadjoint-variableapproaches;

theprocedurewasdemonstratedfor two airfoil problems:low-Reynolds-numberlaminar

flow andhigh-Reynolds-numberturbulentflow. In theirwork, thefailure to differentiate

theturbulencemodelingterms(becauseof theircomplexity)resultedin inaccuratediscrete

SD's. Later, the IIM strategywasimplementedin a 3-D marchingEuler codeto obtain

SD's for severalnongeometricdesignvariables[44].

ChattopadhyaandPagaldipti[45] obtainedquasi-analytical(discrete)SD's from the

3D parabolizedNavier-Stokesequationsand demonstratedthe methodfor flow over a

deltawing. In their study,grid sensitivitytermswerefirst calculatedvia finite differences;

in a later study [46], they werecomputedwith a quasi-analyticalmethod.Huddlestonet



al. [47] appliedtheIIM strategyto calculateconsistent,discreteSD's from a 2-D Euler-

solver using the Gauss-Seidelalgorithmwith subiterations.The exampleusedin their

studywasflow overanairfoil at subsonicandtransonicflow conditions;theydefinedthe

shapeof the airfoil with aBezier-Bernsteinparameterization.In their study, they notea

discrepancyin the SD's whenthe quasi-analyticalresultsarecomparedwith the results

obtainedwith finite differencing; this discrepancyis attributedto approximationof the

derivativesof Roe's flux-difference-splittingscheme.

1.1.2 Design Optimization

Designoptimizationmethodscan be roughly classifiedas inversedesign,gradient-

baseddesign,andnongradient-baseddesign. Inverseaerodynamicdesignis a procedure

in whichtypically atargetsurface-pressuredistributionis specified,andthecorresponding

shapeis calculatedthat will bestproducethis pressureprofile. The disadvantageto this

methodis that physically realizablesolutionsmay not exist. Thus, the inversedesign

problemmustbecarefully formulated. A reviewof inverseaerodynamicdesignmethods

is given in Ref, 48.

Nongradient-basedoptimizationmethodsarebasedon geneticalgorithms,simulated

annealingtechniques,andneuralnetworks.Gradient-basedtechniquescanbeclassifiedas

eitherlooselycoupledor tightly coupledoptimizations.Looselycoupledoptimizationcan

alsobecalledthe"black box" method,in whichtheoptimizationsoftwareis implemented

outsideof theanalysiscycles;theoptimizerdrivesandcontrolstheanalysisandSA codes

in theoptimizationprocedure.Theusertypically canusetheoptimizationcodeasablack

box, in which the existing analysisand SA softwareare usedfor optimization without

modifications. In the tightly coupledoptimizationprocedure,the optimizationcyclesare

embeddedwithin (andareconcurrentwith) theiterationsthatarerequiredin thefunction-

analysisprocedure.Gradientinformation is obtainedconcurrentlywithin the procedure.

Theend resultof thetightly coupledoptimizationprocedureis thefinal improveddesign

at convergenceof the function-evaluationcode. Gradientinformation for the loosely
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coupled and tightly coupled methodscan be obtainedwith either the discreteor the

continuousapproach.

Rizk [49] formulated a tightly coupled optimization procedure ('alsoknown as

simultaneousanalysisanddesignoptimization)andsummarizedseveralCFD applications

of this techniquein Ref. 50. GhattasandXiaogang[51] useda discreteformulation to

obtain the requiredgradientinformation and formulateda tightly coupledoptimization

procedurein an applicationto a low-Reynolds-numberviscousflow. Hou et al. [52]

successfullydemonstratedtightly coupledoptimizationwith adiscreteadjointformulation

in applicationto aquasi-1-Dnozzleproblem.Thesetwo independentderivationsof Hou

and Ghattasarrive at essentiallythe same formulation for simultaneousaerodynamic

analysisanddesignoptimization;theirmethodsarecloselyrelatedto variationalor control

theory techniques.Ta'asanet al. [53] andKuruvila et ',tl. [54] used a continuous adjoint

formulation to obtain gradient information and formulated the "one shot procedure,"

which is a tightly coupled optimization scheme in which a highly efficient multigrid

method is used to solve the potential-flow equations and the accompanying adjoint

sensitivity equation. With this method, the entire optimization procedure requires only

about two to three times the computational cost of a single flow analysis. Huffman et al.

[55] used a continuous adjoint formulation coupled with mesh sequencing to implement

a simultaneous analysis and design optimization procedure in the TRANAIR code, which

solves the full-potential equations of 3-D fluid flow. They employed a quasi-Newton-type

solver to efficiently solve the flow analysis and adjoint sensitivity equations.

Other studies have recently been documented that present results for the loosely

coupled aerodynamic optimization of wings using the 3-D Euler equations together

with SD's calculated with either the discrete direct or discrete adjoint method. These

studies were for transonic flow: therefore, they required a general 3-D flow solver

(and appropriate computational grid) capable of solving mixed subsonic, transonic, and

supersonic flows. For 3-D irlviscid flow over a wing, Burgreen [56] and Burgreen and
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Baysal [57, 58] consideredboth wing-sectionand planform design variablesin their

aerodynamicshape-optimizationstudy. Jameson[59] consideredwing-sectionvariables

only (for a fixed planform)andimplementedan optimizationtechniquebasedoncontrol

theory. Chattopadhyaand Pagaldipti [45] developeda multidisciplinary, multilevel

decompositionprocedurefor the optimal designof a high-speedtransportwing with

the parabolizedNavier-Stokesequationsand quasi-analyticalaerodynamicSD.

Korivi et al. ([60] and the presentstudy) useconsistent,discreteSD's obtainedby

the direct-differentiationapproachvia the IIM with a space-marchingalgorithm for the

Eulerequations.Design-improvementstudiesareaccomplishedby usinggrid sensitivities

from anautomaticallydifferentiatedgrid-generationcode.TheHSCT24Econfigurationis

chosenasthetestcasefor thedesign-improvementstudiesin which only fully supersonic

flow is considered.

1.2 Scopeand Objective of the Present Study

The central focus of this study is to develop and demonstrate a methodology to

efficiently calculate discrete (quasi-analytical) gradient information from advanced CFD

codes. The IIM is proposed and successfully demonstrated in two dimensions to calculate

these SD's. After successful demonstration in two dimensions, this methodology is

extended to a 3-D marching Euler flow code to accurately and efficiently calculate

geometric and non geometric SD's. Finally, a 3-D feasibility study (with the geometric

SD) is done for the aerodynamic design improvement of the HSCT 24E configuration.

Fundamental sensitivity equations are derived by direct differentiation of the system

of discrete nonlinear algebraic equations that model either the Euler or TLNS equations for

2-D and 3-D steady flows. This differentiation results in large systems of linear algebraic

sensitivity equations that must be solved to obtain the derivatives of interest. Solving these

sensitivity equations in standard form (i.e., nonincremental form) with a direct-solver

approach is an option that has been investigated for some applications. Some important



11

advantagesare realizedin using a direct methodwhenfeasible. The lower/upper(LU)

factorizationof the coefficient matrix is stored in computermemory,and for multiple

right-handsidesof the equation(correspondingto differentdesignvariablesor different

adjoint variables) the linear sensitivity equationscan then be efficiently solved by

the simple forward and backwardsubstitutionprocedure. However, the most serious

disadvantageof a direct methodis the extremelylarge computerstoragerequirement,

which appearsto be well beyondthe current capacityof modem supercomputersfor

practical 3-D problems; this capacity can even be exceededin two dimensionson

computationalgrids that containa large numberof points.

In aneffort to circumventthecomputerstoragelimitation for thedirectmethods,this

study focuseson fundamentalalgorithm developmentfor the efficient iterative solution

of the aerodynamicsensitivity equations.The objectiveis to developa solid framework

in two dimensionsfrom which extensionsto threedimensionsareproven feasible. In

general,a seriousdifficulty encounteredin the developmentand applicationof iterative

techniquesis thelackof diagonaldominanceor pooroverallconditioningin thecoefficient

matrix. Unfortunately,thisproblemis a verycommonoccurrencein theCFD coefficient

matricesof interest; the severity varies greatly and dependson many factors. This

problemcan manifestitself in either poor performanceor even completefailure (i.e.,

divergence)of an iterative algorithm.

An "incremental" iterative method(also commonlyknown as the "delta" or "cor-

rection" form) is proposedin the presentstudy to iteratively solve the aerodynamic

sensitivity equations. This methodhasa computationallyuseful property that can be

effectively exploited to combatthe problemsof poor iterative algorithm performance.

This usefulpropertyallows theintroductionof "approximationsof convenience"into the

coefficient-matrixoperatorof theequationswithout affectingtheaccuracyof the SD's at

convergence.Theseapproximationsmust be "reasonable"so that the resulting iterative

strategyis convergent.In contrast,if approximationsaremadeto thecoefficient-matrix
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operatorof theequationsin thestandardform, thenthecomputedSD cannotbeconsistent

discreteforms; that is, theywill not be the correctderivativesof the nonlinear"algebraic

equationsthat model thesteady-stateflow. In particular,it is proposedandsuccessfully

demonstratednumerically herein that the identical, diagonally dominant, approximate

coefficient-matrixoperatorandalgorithm,commonlyassociatedwith implicit methodsfor

solving the nonlinearflow equations,canalsobeusedto iterativelysolve(in incremental

form) the consistent,discretesystemsof linearequationsfor aerodynamicSA.

The truly significantpracticalbenefitsof the proposedIIM can be realizedonly if

the method can be successfullyextendedfor use in threedimensions;this extension

is demonstratedhereinwith the 3-D Euler equations. In particular,a space-marching

'algorithm together with the IIM is developed to calculate SD's in three dimensions; this

method is applicable to fully supersonic, inviscid flow.

Another major part of this study focuses on the feasibility of applying the aerodynamic

SD's to aerodynamic design optimization procedures in three dimensions; the HSCT 24E

filleted-wing-body configuration (without nacelles and horizontal fins) is considered in

this demonstration. A surface/volume-grid-generation code is differentiated to obtain

the required grid-sensitivity terms, which are subsequently coupled with the SA code.

The resulting SD's obtained via the IIM are compared on the basis of accuracy and

efficiency with the same SD's obtained via finite differencing. The flow-analysis code,

the differentiated surface/volume-grid-generation code, the aerodynamic SA code, and

an optimizer code are coupled to make a complete aerodynamic design package. This

design package is applied in three dimensions for thickness, camber, and planform design-

improvement studies of the HSCT 24E configuration at supersonic cruise conditions.

The development of computer codes to conduct this study is summarized as follows.

A 2-D Navier-Stokes computer code is developed with the capability to compute SD

for geometric and nongeometric design variables via the IIM; this includes both the

direct-differentiation and the adjoint-variable formulations. In particular, for accurate
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and efficient applicationsto airtbil problems, the computer code is developedwith

a "lift-corrected" far-field boundarycondition [61] for flow analysisand SA. A 3-D

space-marchingEuler code,MARSEN (marchingEuler sensitivities), is developedfor

aerodynamicflow analysis,and the capability is developedfor this code to compute

SD's for geometricand nongeometricdesignvariablesusing the IIM with the direct-

differentiation approach.

1.3 Thesis Outline

This document is organized as follows. In Chap. 1, the introduction, literature review,

and motivation have been presented. A brief review of the governing equations and

method of solution is given in Chap, 2 for the 2-D Navier-Stokes equations, and necessary

modifications are given for the space-marching algorithm applied to the Euler equations

in three dimensions. The standard sensitivity equations with the direct differentiation

and adjoint-variable approaches are given in Sec 3.1 and the IIM strategy is given in

Sec. 3.2; the incremental iterative forms of these standard sensitivity equations are given

in Sec. 3.3: a discussion with regard to the grid sensitivity is given in Sec. 3.4. The

IIM methodology is extended to the space-marching Euler algorithm in three dimensions

in Sec. 3.5. The SD's in two dimensions for a subsonic laminar case and a transonic

turbulent case are given in Secs. 4.1 and 4.2, respectively. Similarly, the SD's in three

dimensions for geometric and nongeomewic design variables are given in Sec. 4.3. In

Chap. 5, sample results are given from a feasibility study for design improvement of

the HSCT 24E wing; SD's with respect to geometric design variables, coupled with an

automatically-differentiated surface/volume-grid-generation code and an optimizer code

are used. The summary, conclusions, and suggestions for further research are given in

Chap. 6. The governing equations in curvilinear coordinates for the 2-D Navier-Stokes

equations and for the 3-D Euler equations are given in Appendix A. The procedures for

the linearization of a lift-corrected far-field boundary condition are given in Appendix B.
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The adjoint-variableformulationin IIM form for inviscid flow with the space-marching

'algorithm is given in Appendix C. The parameterization of the HSCT 24E wing is given

in Appendix D. Finally, a brief review of the automatic differentiation tool ADIFOR is

given in Appendix E.



Chapter 2

GOVERNING EQUATIONS AND METHOD OF SOLUTION

In the present study, the governing equations for compressible, unsteady, inviscid

flows in three dimensions and viscous flows in two dimensions are solved. These solutions

are summarized in Appendix A. These equations are solved in the present study in their

integral conservation-law form with a cell-centered finite-volume formulation [62, 63].

In this section, the procedure adopted to solve the 3-D Euler equations is outlined, and

necessary modifications are suggested to handle the 2-D TLNS equations and 3-D space

marching algorithm. The discretization of Eq. (A. 1) in space and the application of the

Euler implicit time discretization yields the following:

{nAq} = {R n+l} (2.1)

Linearization of Eq. (2.1) about the n th time level yields

[ 0Q 1] {nAQ}= {Rn(Q)} (2.2a)

{nAQ } = {Qn+l}_{Qn}

n = 1,2,3... (2.2b)

['1In Eq. (2.2), 3"E7 is a diagonal matrix, and is a large, banded, sparse matrix. In

this study, this Jacobian matrix plays another central role in the SA as discussed later.

As the time step approaches infinity, Eq. (2.2) simply becomes the Newton-Raphson

method for solving the nonlinear set of equations. Because we are interested only in
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steady-stateflow, theright-handside of Eq. (2.2a)governsthe physicsof the fluid flow

and the left-handside is thematrix operatorthat governstherateof convergenceof the

iterative procedure.ThesolutionQ* is the vectorof field variablesthat correspondsto

the residualat zero(i.e., the steadystate).The residualR(Q) includesthe flux balances

acrosseachcell in the computationaldomain.

R(Q) = _F_(Q)+ _G_(Q)+ _(Q)

and

(2.3)

ik-_--Q-- ] t-_/_Q) (2.4)

where F(, G,, and He are the inviscid flux terms in the (, r1, and _ curvflinear coordinate

directions. The inviscid fluxes are calculated with the Van Leer upwind flux-vector-

splitting method. Van Leer's flux vector splitting is chosen over other methods because

with this method the fluxes are continuously differentiable at sonic and stagnation points;

this feature is vital in the present study. Details of this method are given in Ref. 64.

The _13((Q)terms inEq. (2.3) and '/-_i_/\Q / inEq. (2.4)are evaluated as

_(q)= _-_7<(Q-) +_+_-(Q+)

A 1
'_-D-_QJ= t, oq ) t, 7_ _q) (2.5)

where _- and _+ are backward and forward difference operators respectively. These

fluxes are split into positive and negative parts based on the eigenvalues of the Jacobian

matrices of the respective fluxes. Conserved variables Q are extrapolated from cell

centers to cell faces in evaluating fluxes at cell interfaces based on the monotone

upstream-centered schemes for conservative laws (MUSCL). The extrapolation procedure

is accomplished with ¢ - _ interpolating polynomials given as

Q_+'/'-' = Qi + 1¢_ [(1 - _) V¢ +(1 + _f)Af]Qi

+ 1
Qi+l/2 = Qi+l - _¢f[(1 - _f) V_ +(1 + _)/kf] Qi+l (2.6)
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where

/k_Qi = Qi+l - Qi, _Qi = Qi - Qi-] (2.7)

The value of _ determines whether extrapolation is first order (_ = 0) or higher order (_

= 1). Spatial accuracy is determined by the value of _, where n = -I is second-order-

accurate fully upwind, _- = 1/3 is third-order-accurate upwind biased (less than third

accurate for multidimensional computations), and _ = 1 is equivalent to a second-order

accurate central difference scheme. The subscript _ denotes the direction in which the

extrapolation is done. Similarly, expressions for G,7 and He are obtained by replacing

i with j and k, respectively. With Eqs. (2.3) and (2.4), Eq. (2.2) can be written for a

particular ijk th interior cell as

_ + B( + B, 7 + B( Qi,j,k

11 11 n

+D(/_Qi-2,j,k+A(AQi_I,j,k + C(AQn+],j,k + E_Qi+2,j,k

C n E _+D_/_Qinj_2,k+A_AQinj_l,k + _AQi,j+l,k + _AQi,j+2,k

n E n+D(AQinj,k-2+AcAQinj,k_l + C(AQi,j,k+ 1 + cAQi,j,k+2

-- p_ n n n Ii-- i,j,k(Qi,j,k, Qi-2,j,k, Qi-l,j,k, Qi+l,j,k, Qi+2,j,k,n Qi,j-2,k,n

Qin,j - 1,k, Qn Qn n ni,j+l,k, i,j+2,k, Qi,j,k-2, Qi,j,k-1, Q_,j,k+l, Q_,j,k+2) (2.8)

where A_, B_, CO D_, and E_ are 5x5 block matrices in the _ direction and similarly

for the 7/ and ( directions. Equation (2.8) shows the left-hand side of the equation as

a "thirteen point molecule" in a linear sense and the right-hand side of the equation

represents the same molecule in a nonlinear sense. In two dimensions the block matrices

are 4x4, and the block matrices A,7, B,7, C,7, D,7, and E, 1 are zero. Additional contributions

to the block matrices and residual expression are made to account for the viscous

terms, when applicable. The finite-volume equivalent of second-order-accurate central

differences is used for the viscous terms. Details are given in Ref. 65. In two dimensions

Eq. (2.8) can be written for a general ik th interior cell as
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I I ]_'+B e+B¢ AQ_Ik

D 11 II

+ _A, Qi_.-, k+ACAQi_I, k + C,_-AQ_'+I,k + E,_-AQ_'+2,k

+D_/NQ_,k_2+A¢/NQ_,k_1 + C;'AQ_,k+ 1 + EcAQ_,k+ 2

: Ri,k (Qll. k, Qi-'e.k,n Qn_ 1.k' Q i+2,k,n Qi+1,k,n Qink- 2' qi,k-In ' Q_,k+l, Qi,k+2)n (2.9)

Adjustments have to be made to Eq. (2.8) in three dimensions and Eq. (2.9) in two

dimensions near the boundaries. Furthermore, in the present study, all boundary

condition relationships are consistently linearized (except lift-corrected far-field boundary

conditions) and pry-eliminated in the global Jacobian matrix [_'-_1" References 39 and 65

provide more details regarding the linearization of boundary conditions. Inclusion of the

linearization of the boundary conditions (discussed in Chap. 3) is of utmost importance

in the present study. The structure of the global Jacobian matrix may change, depending

on the type of boundary condition. For example, the implicit treatment of the periodic

type of boundary condition results in off-diagonal terms inside or outside of the main

bandwidth, depending on the ordering of the cells. Another example is the implicit

treatment of the lift-corrected far-field boundary conditions [39], which couples the flow

variables at the far field boundary with the flow variables on and adjacent to the surface

boundary of the airfoil, and thus destroys the bandedness of the Jacobian matrix.

Equation (2.2) can be repeatedly solved with a direct solver (a Gaussian elimination

solver) as the solution is advanced in time to steady state. Because of memory limitations,

this method is not feasible for large 2-D and 3-D problems. The computational effort

is reduced if first-order implicit discretization is used for the left-hand side of Eq. (2.2);

this treatment does not affect the computational accuracy of the steady-state solution,

which is determined by the spatial differencing of R(Q). Note that a first-order implicit

discretization makes the left-hand-side Jacobian matrix of Eq. (2.2) block diagonally

dominant and is represented by the approximate operator [_]. Typically, the differences
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betweenthe true Newton coefficient operatorand the approximatecoefficient-matrix

operator include

(1) A "time-step" term is added,which significantly enhanceseachdiagonalelement

of the coefficient matrix [_1" This addition is equivalent to the inclusion of

underrelaxation in the true Newton's method and under certain restrictions can make

the iterative procedure of Eq. (2.2) "time accurate".

(2) Simplifying linearization errors of various types are included in the construction

of the approximate operator [_J. For example, consistent boundary-condition

linearization is typically neglected, or a first-order accurate upwind treatment of the

inviscid terms may be used in this matrix operator despite the higher order accurate

treatment of these terms in the vector Rn(Q) on the right-hand side of the equations.

(3) Additional "approximations of convenience" are included in the matrix operator

in order that an efficient (in terms of computational work and computer storage)

approximate solution of the linear problem can be generated at each iteration on

the nonlinear problem. For example, with the popular, spatially split, approximate-

factorization method of Ref. 66, an approximate solution of Eq. (2.2) is produced

at each n th iteration with alternating direction sweeps that involve the solution of a

series of uncoupled sub-systems of block-tridiagonal linear equations in each sweep

direction. This algorithm is used in the sample problems for this study. Additional

well-known iterative algorithms that have been applied to the solution of the Navier-

Stokes equations include LU approximate factorization [67], conventional relaxation

methods [68], strongly implicit methods [69], and preconditioned conjugate-gradient

methods [70, 71].

In Eq. (2.8), De, E_, Do, E,_, De, and E¢ are zero for the first-order implicit discretiza-

tion. In three dimensions, supersonic flow is solved in a space-marching manner: this

involves locally iterating in each crossflow plane, solving a local nonlinear problem,
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before proceeding to the next cross plane. In fully supersonic flow, there is no

upstream dependence on the downstream behavior. Equation (2.8) can be written for fully

supersonic flow with first-order upwind discretization for the left-hand side as follows:

f' 1_-_ + B_ -t- Bq + Be /NQ_,j,k

+A.AQ_',j-1 k + C.AQin, j+I,k + AcAQI'j,k_ 1 + CcAQinj,k+,

• II Q * * H= Rl,j,k(Qi,j,k, i-2,j,k, Qi-l,j,k, Qi,j-2,k,

" Q. Q" Q" oQ" Q" Q"Qi,j-lk, i,j+l,k, i,j+2,k, i,j,k-., i,j,k-1, i,j,k+l, i,j,k+2) (2.10)

In Eq. (2.10), the coefficient of AQi+I, C_, is zero for fully supersonic flow. Space

marching is done in the direction of the flow (i.e., the i direction in the present study).

Information in the previous cross plane is known when iterating locally in the i th cross-

flow plane [72] (i.e., Qi*_land Q*i-2 are the steady-state flow variables in the i-1 and #2

cross planes respectively). For this reason, the term AQi_I,j, k is zero and not included

in Equation (2.10) for the present space-marching algorithm. Equation (2.10) can be

expressed as

[M + B. + Be] AQ_,j,k

A n n ¢AQi,j,k+l+ rF/_Qi,j-l,k + Cr/AQi,j+l,k + A(/NQ_,j,k_ 1 + C n

= Ri,j,k(Qin, j,k, Qi'_ 2,j,k, Q*-1,j,k, Q_,j-2,k,

Qin,j-l,k, Qin,j+l,k, Q_,j+2,k, Qn 9, n ni,j,k-. Qi,j,k-1, Qi,j,k+l, Q_,j,k+2) (2.11)

where

M

Equation (2.11) is approximately factored as
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n A n[(M + B,)/XQi,j,k q-A,AQ_,j_I.k -1-C o Qi,j+l,k] [M-I]

A A c_"[(M+ Bc)AQ_,j,k+ c ,_,j,k-,+ C_Z_Q_,j,k+,]

= Ri,j,k(Qinj,k, Qi*--e,j,k, Qi*--l,j,k, Qin,j-2,k,

Qinj_,,k, Qi,j+l,k, n , n nn Qi,j+2,k, Qi.j,k-2, Qi.j,k-I ,n n Qi,i k+l Qi,j,k+2) (2.12)

The solution of Eq. (2.12) involves the solution of two btock-tridiagonal equations. The

preceding equation can be written compactly for the ith crossplane as

[(M + B.), A., C.]i_i = Ri"(Q{' )

[(M + Be), A¢, C;-]inGQi = Mini

nAQ i =Qn+l _Qn n= 1,2,3 (2.13)

where _i is the intermediate solution for the i th crossplane. The flow variables are solved

and updated at each iteration as shown in Eq. (2.13).
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DISCRETE SENSITIVITY ANALYSIS

In Sec. 3.1 of this chapter, fundamental sensitivity equations are derived for two di-

mensions in standard form with the direct-differentiation and adjoint-variable approaches.

In Sec. 3.2, the incremental method for solving the linear system of equations is discussed.

Later, in Sec. 3.3, the standard sensitivity equations are cast in incremental iterative form

in two dimensions. Various methods for calculating mesh sensitivity are discussed in Sec.

3.4. In Sec. 3.5, the IIM is extended to solve the sensitivity equations in three dimensions

with a space-marching procedure for supersonic Euler flow with the direct-differentiation

approach.

3.1 Fundamental Aerodynamic Sensitivity Equations in Standard Form

In general, the fh aerodynamic system response Cj is functionally dependent on

the vector of steady-state field variables {Q*}, the vector of the computational grid

(x,y) coordinates, {X}, and perhaps also explicitly on the vector of independent design

variables 'A. That is,

Cj = Cj(Q*(_),J_(_),_) (3.1)

The SD of Cj with respect to the kxh design variable _k (i.e.. the k th element of 3) is, thus,

d_-"'k "- OQ J d_k ) "4- O)( J [ _'k "_ O_-"-k (3.2)

where the superscript T denotes transpose.

The notation for a total derivative has been used on the left-hand side of Eq. (3.2)

which indicates that the total rate of change of Cj with respect to 3k is included in the
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term anddistinguishesit from thepartialderivativeon theright-handsideof theequation.

Nevertheless,,_ is a partial derivative in the sense that Cj is generally a function of

multiple independent design variables /), as seen in Eq. (3.1). In Eq. (3.2), the term

{_2 } as grid-sensitivity vector; a detailed discussion is given in Sec. 3.4.is known the

The grid-sensitivity vector is null if the design variable _k is not related to the geometric

shape of the domain. The vector dC]k1' which is the sensitivity of the steady-state

field variables with respect to the/_h design variable, is evaluated for use in Eq. (3.2) by

solving a large system of coupled linear sensitivity equations.

The large system of coupled nonlinear algebraic residual equations that model the

fluid flow can be generally expressed as

{R(Q*(C_),X(C_),_,CL)} = {0} (3.3)

where the dependence of these equations on the grid ()(} and on the design variables

/_ is noted. In addition, Eq. (3.3) includes the possibility of an explicit dependence on

the steady-state lift coefficient CL. This explicit dependence is found in the far-field

boundary conditions of an isolated lifting airfoil when the accurate, "lift-corrected" far-

field boundary conditions of Ref. [61] have been used, as in the 2-D sample problems

of this study. Note that CL itself depends on the field variables {Q*}, the grid {X},

and possibly explicitly on the design variables ¢_, in the manner expressed by Eq. (3.1).

The explicit dependence on CL noted in Eq. (3.3) might, therefore, appear redundant;

however, the computational advantages of this particular grouping of terms is discussed

in detail in Ref. [39] and will become apparent subsequently.

Differentiation of Eq. (3.3) with respect to ¢3k yields

_L } dCL-gS/-k= (0} (3.4)

where in Eq. (3.4) the term _ is evaluated with a relationship of the form given bydflk

{ }Eq. (3.2). Note that the vector _ is very sparse; nonzero contributions to it arise

only from the "lift-corrected" far-field boundary-condition equations. Equation (3.4) is,
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thus, a largesystemof coupledlinear equationsthat can in principle be solved for the

{unknown vector d_k J' one such solution is obtained for each design variable 3k. This

method is known as the quasi-analytical method for computing SD's.

I+.]The matrix _YOQ of Eq. (3.4) is the Jacobian of the nonlinear flow equations

(evaluated at steady state) with respect to the field variables and includes consistent

treatment of all boundary conditions; an exception is the contribution that results from the

explicit dependence of the lift-corrected far-field boundary conditions on CL. Substitution

of" Eq. (3.2)for _ into Eq. (3.4)reveals that this contribution to [_-_] is given by the

{oFt}{ °--_c ],T I°rt] of Eq. (3.4) is the Jacobian of thevery sparse matrix _ OQ j The matrix

flow equations (evaluated at the steady state and including all boundary conditions) with

respect to the grid coordinates [33-37]; again, the exception is the contribution from the

explicit dependence of the far-field boundary conditions on CL. Here, this contribution is

given by the very sparse matrix _ tox ) • The vector _ of Eq. (3.4) accounts

for explicit dependencies (if any) of the flow equations (including boundary conditions)

on /3k; the contribution to this vector from the CL dependence of the far-field boundary

conditions is given by the vector _ _'_'k" More details in regard to the inclusion of

lift-corrected far-field boundary conditions are given in Appendix B.

The Jacobian matrix [_-_] must include consistent linearization of boundary condi-

tions. This inclusion can be done with or without pre-elimination, the details of which are

given in Ref. [35]. With pre-elimination, one expresses the boundary unknowns in terms

of the interior unknowns, whereas without pre-elimination one solves the interior and

boundary unknowns simultaneously. Inclusion of the linearization of boundary conditions

in the Jacobian matrix is very important to obtaining accurate SD's as noted by Hou et

al. [35].

A well-known, closely related alternate strategy for computing SD's known as the

adjoint -variable method, is easily developed with expressions that have been presented
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thusfar. The developmentbeginsby combiningEqs.(3.2) and (3.4) to yield

(3.5)

The adjoint-variablevector {,_j } is arbitrary at this point because the inner product of

{Aj} is taken with the null vector, from Eq. (3.4). Thus, no net change occurs from Eq.

(3.2) to Eq. (3.5) because the entire additional term on the right-hand side of Eq. (3.5)

is zero for any and all {Aj }. Expansion and rearrangement of Eq. (3.5) yields

+ J _LJ'-_k +\[-bQJ +{AJ}T[_----_],][d3kJ (3.6)

The necessity of evaluating the vector { _k'} with Eq. (3.4)is eliminated for all flk by

selecting the vector {Aj} such that the coefficient of {_'k" } in Eq. (3.6)is null. That

is, select {Aj} so that it satisfies

1-b-_} + {AJ}T_ = {0}T (3.7)

or

[oR] {ocj}{_j}+ _ ={0} (3.8)

Therefore, Eq. (3.8) is solved for this particular choice of the adjoint-variable vector {Aj },

the SD's of Cj with respect to all 3k are computed by

(3.9)
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Note that Eq. (3.9)canbesolvedfor _ddkonly if _dl3kis knownor if Cj = CL. Therefore,

when the lift-corrected far-field boundary conditions are treated in the manner described,

then _d_k must be the first SD that is calculated (for any and 'all }3k of concern), regardless

of whether the sensitivity of CL is of actual interest. (Typically, of course, the SD's of

CL will be of interest in most problems.) A particular solution {Aj} is valid only for

a specific system response Cj; thus, the solution of Eq. (3.8) must be repeated for each

different system response of interest.

We can easily verify from the preceding equations that each solution ( -_?'_k"} of

Eq. (3.4) for a particular design variable can be used for an unlimited number of different

system responses. In contrast, however, each solution {Aj } of Eq. (3.8) for a particular

system response can be used for an unlimited number of different design variables.

Therefore, the total number of large linear systems that must be solved for a particular

problem can be minimized through a judicious selection of one of these two methods,

depending on whether the number of system responses of interest or the number of

design variables of interest is larger.

In terms of computational efficiency, the significance of the difference in the two

methods is diminished greatly if a direct method is used to solve these linear systems (i.e.,

either Eq. (3.4) or (3.8)). The difference is diminished because with either method the

LU factorization must only be done once and is then repeatedly reused for multiple right-

hand-side vectors. However, this distinction can become very important if an iterative

strategy is used to solve these linear systems, particularly if the difference between the

number of design variables and the number of system responses of interest is very large.

Despite this difference, these two methods are equivalent in the sense that they yield

identical values for the SD, if properly implemented computationally.

To briefly summarize, the calculation of the aerodynamic SD's with both the discrete

direct differentiation and adjoint methods requires the direct or iterative solution of large

linear systems of equations of the type given by either Eq. (3.4) or (3.8). These two
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systemsof linear equationsare referredto asthe "aerodynamicsensitivity equationsin

standardform." Fundamentalalgorithm developmentfor the solution of one of these

two linear systemsis easily extendedand appliedto the other becausetheir respective

coefficient matrices and _ are transposesof eachother. When the standard-

form equationsaresolved, no approximationscan be introducedinto any of the terms

without simultaneouslyintroducing error into the resulting SD's. In this form, the

frameworkto supportthe developmentof iterativemethodsis thus rigid andrestrictive.

As a consequence,giventhechoiceof a higherorderaccurateupwindapproximation

for the spatial discretizationof the flow analysis,a consistent,higher order accurate,

upwind spatial discretization,including a fully consistenttreatmentof all boundary

conditions, is required in the coefficient-matrixoperatorof the sensitivity equations

(in standard form). Furthermore, no "time term" can be added here to enhance each

element of the diagonal, as is used (in contrast) in the implicit formulation for solving

the nonlinear flow equations. Unfortunately, the resulting coefficient matrix (either o-_

or ) of the linear sensitivity equations in standard form in this case is not block-

diagonally dominant [68]; consequently, the computational performance of traditional

iterative methods for solving these equations in this standard form is expected to be

poor or even to fall [39]. Therefore, this particular difficulty (i.e., the lack of sufficient

diagonal dominance) and its resolution are of principal concern in the development of

the incremental form of the equations in the following sections.

3.2 Basic Linear Equation Solution in Incremental Form

Consider the linear system of algebraic equations in the general form

[A]{Z*} + {B} - {0} (3.1 O)

where {Z*} is the solution vector. In treating the problem of solving Eq. (3.10), which

is essentially a "root finding" problem, the application of Newton's method (traditionally
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usedin root finding for nonlinearequations)to thelinearproblemyieldsthebasictwo-step

incrementaliterative formulation

-[A]{mAz} = [A]{Z m} + {B} (3.11)

{Z m+l} __ {Z m} + {mAz}

m = 1, 2, 3, .... (3.12)

where m is an iteration index and {mAZ} is the incremental change in the solution from

the known (m th) tO the next (ruth+l) iteration level. An initial guess {Z 1 } is required to

begin the procedure, which in the present study is taken everywhere as zero. If Newton's

method is applied strictly, the coefficient matrix [_] is equal to the matrix [A], and clearly

the two-step iterative strategy of Eqs. (3.11) and (3.12) for the linear problem converges

on the first iteration for any initial guess. Therefore, in this case the solution of the

linear system in the standard form (Eq. (3.10)) and the solution in the incremental form

(Eqs. (3.11) and (3.12)) are equivalent.

More generally, however, the matrix [A] is not necessarily equal to the matrix [A].

The matrix [A] can be any convenient approximation of the matrix [A] with the restriction

that [A] must approximate [A] well enough so that the two-step iterative procedure

(Eqs. (3.11) and (3.12)) converges (or at the very least can be forced to converge by

including a strategy such as underrelaxation). Simply stated, [A'--]should capture the

essence of [A]. Furthermore, because the equations have been cast in delta form, the

incremental method produces the unique solution of Eq. (3.10), {Z* }, if convergent. In

this formulation, the purpose of the left-hand-side operator is to drive the right-hand-side

vector to zero; the accuracy of the unknown {Z*} depends on the right-hand side and

any approximations to the right-hand side result in erroneous final results.

Equation (3.11) can be solved with either a direct solver or an iterative solver.

With the direct solver, the left-hand-side operator of Eq. (3.11) is LU factorized and
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stored. This LU factoredmatrix is reusedfor multiple right-hand sideswith forward

and backwardsubstitutionsfor multiple iterations. For large problems in two and

three dimensions,iterative 'algorithms are the only choice because of the restrictions

on computer memory. If an iterative algorithm with inner iterations is introduced for

solving Eq. (3.11) then the the iteration cycle over Eqs. (3.11) and (3.12) becomes

the outer iteration index. The inner iterative procedure convergence is ensured if the

left-hand-side matrix approximation is block-diagonally dominant. The outer iterative

procedure convergence is ensured, as discussed previously, if the approximate operator

is an adequate approximation to the matrix [A] and, when inner iterations are included,

if the inner iterative procedure is converged to some satisfactory tolerance (whatever that

tolerance may be).

For example, for selection of a conventional relaxation algorithm to solve Eq. (3.11),

the matrix -[A] is split into two parts as

The IIM becomes

-[AJ = [M] + IN] (3.13)

Step 1-

Step 2"

[M]{m'iAz} = [A]{Z m} + {B)- [N]{m'i-IAz}s

i = 1,2, 3, .... (imax) m

{Z re+l) = {Z m} q-{m,(imax)mAZ}

m = 1,2,3,. .... (3.14)

where (imax) m is the number of inner or subiterations to converge the mth linear

subproblem at step 1 to some desired tolerance. The splitting of the matrix as in Eq. (3.13)

is chosen such that Eq. (3.14) can be repeatedly solved efficiently in terms of CPU time

and memory requirement. Popular choices for splitting the matrix yield either the Jacobi

or the Gauss-Siedel algorithms of either the point or line-relaxation types. More details
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are given in Ref. [65] in which the delta-formline Gauss-Siedelalgorithm with inner

and outer iterationsis chosento solve the nonlinear2-D fluid equations.

Advantagesof usingthe IIM canbe summarizedas follows:

(1) Iterative algorithmscan be usedto solve the sensitivity equationsin incremental

iterative form efficiently. In contrast,for solution of the standardform of these

equations,iterative algorithmsmay convergevery slowly or even may result in

completefailure; this is becauseof the lack of block-diagonaldominancein the

higher order Jacobianmatrix.

(2) The sameapproximateoperatoravailable for solving the flow equationsin most

implicit CFD codescanalso be usedto solve the sensitivity equation;thus a time

term that acts as an under relaxationparametercan be addedto the approximate

operatorin incrementaliterative form.

(3) Solutionof the sensitivityequationvia theIIM requireslesscomputermemorythan

solution of the sensitivity equationin standardform with in-core bandedsolvers.

This reductionin memoryenablessolutionof large2-D and3-D problems.

(4) Tools like ADIFOR can be usedto computethe right-handside of the sensitivity

equation efficiently and accuratelyeven when complicatedturbulencemodelsare

being used.

3.3 Incremental Solution of the Equations of Aerodynamic Sensitivity Analysis

Application of the fundamental incremental formulation for solution of the linear

equation (Eqs. (3.11 ) and (3.12)) to the linear system of Eq. (3.4) (i.e., the quasi-analytical

method) for computing aerodynamic SD's gives

= [ d/3k j (3.15)

{ dQm+' {m dQd3k }= { dQm
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m = 1,2,3, ..... (3.16)

where

dRm._k } = [__._] fdQm ; dX dC_ a

dC_ _ _OqCL_T_dQm'_ _OqCL_T_dX _ OqCL

d3---7- - [ OQ J [-_"k J + ['_-J [d3kJ + 03--'7 (3.17)

where the left-hand-side coefficient-matrix operator [ o°_] approximates the matrix [oP___I

(which will be discussed subsequently). The vector f dRm/, represents the mth iteration
/ d_k J

on the total derivative of the discrete steady-state nonlinear flow equations (Eq. (3.3)),

with respect to 3k. From Eq. (3.4), clearly this vector must be driven to zero to find the

dQ'/solution _ f of Eq. (3.4), which, is of course, the objective of the incremental strategy

of Eqs. (3.15), (3.16), and (3.17). Approximations must not be made to any terms of

{dRm/.the vector d_ k j, in particular, a consistent treatment of all boundary conditions is

necessary if the converged solution is to yield the correct, consistent, discrete SD's. The

final solution at convergence depends only on the terms of this fight-hand-side vector.

The identical approximate left-hand-side coefficient-matrix operator [_] and algo-

rithm, which are used to solve the nonlinear problem for the flow variables, are also

proposed for use (when evaluated at the steady state) as the approximate left-hand-side

operator and algorithm that are used in solving the linear equation (Eq. (3.15)) for the

flow sensitivities. That is, a first-order-accurate upwind spatial discretization of the

inviscid terms is used in this operator as an approximation here to the higher order

accurate, upwind discretization of these terms. Note that as a result of this choice, block-

diagonal dominance is obtained and maintained in the left-hand side coefficient matrix.

In addition, a false "time term" is included (i.e., added) so that each diagonal element
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of the matrix I_] is further enhanced:this additional term is equivalent to under-

relaxation in the incrementalstrategyshown in Eqs. (3.15), (3.16), and (3.17). The

boundaryconditionsarenot linearizedin a fully consistentmannerin this approximate

matrix operator; far off-diagonalcontributionsfrom the periodic boundaryconditions

which arisewhencalculationsareperformedon aC- or O-meshareneglected.However,

theseperiodic boundaryconditionscausecomputationaldifficulties for thestandard-form

equationswhich requireaconsistenttreatmentin the left-hand-sidematrix operator[38].

Finally, thewell-knownspatiallysplit approximatefactorizationalgorithm [66] (alsoused

hereto solve thenonlinearflow equations)is usedto solveEq. (3.15) (approximately)at

eachm th iteration. If the resulting block-tridiagonal coefficient matrices are stored over

the entire domain, only a single LU factorization of each coefficient matrix is required.

Hence, the coefficient matrix is reused for all iterations and "all design variables. This

strategy is implemented in the large 2-D sample problems presented.

If the adjoint-variable formulation for computing the SD is preferred, then application

of the incremental formulation for solution of the linear equation (Eqs. (3.11 ) and (3.12))

to the linear system of Eq. (3.8) for computing the adjoint-variable vector {Aj } yields

T I°'lTm-- _ {mA'_J} ----- _ {/_j } + "_j (3.18)

(3.19)

For application in Eq. (3.18), the approximate left-hand-side coefficient-matrix operator

and algorithm (described previously for use in Eq. (3.15)) can be easily transposed.

Again, only a single LU factorization of the globally stored block-tridiagonal coefficient

matrices is required.
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3.4 Grid (Mesh) Sensitivity

In this section,thesensitivityof thegrid or meshwith respectto thedesign variables is

discussed. The computational grids used in CFD usually are body-fitted grids. Movement

of the boundary because of changes in the design variables "affects the entire computational

grid. This term is not zero, and, thus, it needs special consideration.

One method for computing this quantity _ is to use divided differences. Each

design variable is perturbed, and a new mesh is generated; mesh sensitivity is calculated

from

{ dX} Y_(flk+/Nflk)--Y_(flk-- Aflk )= 2Ark (3.20)

where central differences are used and Ark is the change in the k th component of

the design-variable vector /_. This method can be used only for those grid-generation

techniques that provide the same number of cells when the design variable is perturbed

as in the original mesh. Grid-generation equations by formulation are smooth compared

with the governing equations of fluid flow; finite differencing can provide a good

approximation. The disadvantage to using this method is its computational cost. If

hyperbolic or elliptic grid-genera_n techniques are adopted, this method for computing

grid sensitivity becomes expensive, particularly when these grid-generation tools are used

in an automated design environment. Moreover, sophisticated grid-generation tools are

interactive, which prohibits their use in an automated design loop.

One method for calculating grid sensitivity is to make use of an automatic-

differentiation (AD) tool to obtain grid sensitivity. Green et al. [77] applied the

automatic-differentiation tool ADIFOR to obtain the grid sensitivity from a 3-D algebraic

grid generator and successfully obtained SD's from an AD -enhanced version of the

TLNS3D flow code for turbulent flow over an ONERA M6 wing. In the present study,

grid sensitivity in three dimensions is obtained from an automatic surface/volume-grid-

generator code [80] by using the AD tool, and the resultant grid sensitivity is successfully
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used in a gradient-based design improvement of the HSCT 24E configuration. This

method can be expensive if iterative grid-generation techniques are used.

Alternatively, a method of avoiding the evaluation of grid sensitivity and expensive

regridding in a design loop is the use of using transpiration [22]. With this method, one

can approximately compute 52 aJTj" and avoid grid generation when the geometry

shape changes. The zero flux through the boundary is modified on the surface to a fixed

value to approximate what would have happened if the body shape had actually changed.

However, this method requires considerable care to compute accurate SD's and model

real surface mass transpiration in Navier-Stokes simulations.

A computationally efficient technique is proposed in Ref. [34] that involves the chain

rule and analytical differentiation of the relationships used to distribute the mesh points

in the computational domain. Boundary coordinates 5_s can be viewed as principal input

to the grid coordinates in the rest of the domain, and these boundary coordinates are

defined by some parametric relationship that involves the design variables. Thus, the

grid generation procedure can be represented as

X = X()_s(/))) (3.21)

The grid-sensitivity term obtained by differentiating Eq. (3.21) with respect to the design

variable f)k is

{dY{
o-57} (3.22)

fox1
where the matrix lOX_ j in Eq. (3.22) is unique to a particular grid-generation program

and needs to be constructed only once. Smith and Sadrehaghighi [73] and Sadrehaghighi

et al. [741 applied this approach and obtained the grid sensitivity for a 2-D algebraic

grid generator TBGG (twin-boundary grid generation), where the surface of the airfoil is

parameterized with an NACA four-digit representation. Burgreen [56] applied this
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approachin two and three dimensions; the boundary was representedwith Bezier-

Bernstienparametefization.Recently,Jamesonand Reuther[20] applied this approach

to airfoil optimization.

Anotherapproachis to constructa setof rulesby which the grid is movedafter the

initial grid is generatedandthento differentiatetheserulesto obtainthegrid sensitivity.

This approachis used,for example,whentheinitial meshis generatedusinga computer

aideddesign[CAD] package.Tayloret al. [39] proposedaprocedurefor calculatinggrid

sensitivitytermsandfor useinefficientgrid regeneration.Astheshapeof the ltowdomain

continuouslychanges as required by any shape optimization process, the mesh points in

the domain must be properly adjusted in the design iterations to avoid the numerical errors

induced by excessive mesh distortion. The requirement of mesh regridding distinguishes

shape design optimization from other design-optimization applications. This procedure

is used in the present 2-D study to obtain grid sensitivity. This method, which will

be presented subsequently, is based on an "elastic membrane" analogy to represent the

computational domain, with grid SD's calculated from a standard structural-analysis code

by using the finite-element method.

A simple method for automatic mesh regridding can be established by introducing

a set of basic displacement vectors "_k tO describe the patterns by which the mesh is to

be regridded. The relationship between the original mesh Xo and the regridded mesh J_

can then be expressed in the form of a linear combination of those basic displacement

vectors and their associated weighting coefficients /3k as

ndv

)_ = 20 -t- Z /_flkVk (3.23)

i=l

where the weighting coefficients are taken to be the design variables. The vector Xo

represents the initial mesh, and ndv is the number of design variables which is produced

with any conventional mesh-generation code; /'X/3k is the change in /3k which produces

the new mcsh X from the initial mesh X_. In this case, the basic displacement vector
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,IS )x)k is simply equal to the required mesh sensitivity vector _ . That is, the grid SD's

are calculated by differentiation of Eq. (3.23), which yields

Note that the grid-sensitivity vectors {_'k} do not change when the design variables are

changed, provided that the domain is always regridded by using Eq. (3.23) as the shape

of the domain changes. Therefore, these grid SD's must be calculated once and then

stored prior to the start of an aerodynamic optimization strategy; they can be reused as

often as needed for grid SA, as well as for automatic mesh regeneration.

The basic displacement vectors Vk can be in any form as long as they are each

independent. In structural shape design optimization, the elastic displacements induced

by the boundary perturbations are commonly selected to represent the basic displacement

vectors. In this way, the movement of the mesh points is governed by linear elasticity,

which not only preserves the continuity of the mesh but also avoids any mesh overlapping.

The same practice must be applied to aerodynamic shape optimization problems, in which

an imaginary elastic medium is introduced to represent the computational domain.

More specifically, the basic displacement vectors can be generated by either the

tictitious load method [75] or the prescribed displacement method [76]. The former

method produces basic displacement vectors by applying one unit load at each node

along the boundary in the direction along which the node is allowed to move. This

concept is illustrated in Fig. 3.1 for a representative airfoil grid. The latter method,

however, produces the basic displacement vectors by imposing a nonzero displacement

(in response to a unit change in each design variable) along the varied boundary. This

concept is illustrated in Fig. 3.2 for a representative airtoil grid. The fictitious load method

is usually applied to cases in which the location of each node on the varied boundary is

considered as a design variable, whereas the prescribed displacement method is applied

in cases in which the shape of the boundary to be designed is parameterized.
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In the following example, a NACA four-digit airfoil is used to demonstrate the

application of the prescribed displacement method for mesh regridding in an aerodynamic

shape-optimization environment. The profile of the NACA four-digit airfoil can be

precisely represented by polynomials in terms of the maximum thickness T, the maximum

camber C, and the location of maximum camber L as

f(x) + C(2Lx - x2)/L 2 x _< Ly(x)= f(x)+C(1-2L+2Lx-x2)/(1-L) 2 x>L (3.25)

where

f(x) = ±0.5T(0.2969x/'_- 0.126x - 0.3516x 2

+ 0.2843 x 3 - 0.1015x 4) (3.26)

and the 4- in the expression for f(x) indicates positive for the upper surface of the airfoil,

and negative for the lower surface.

Because the derivatives of the airfoil shape with respect to T, C, and L are continuous,

small changes in T, C, and L will induce small changes in airfoil shape. Therefore, with

the employment of a Taylor's series expansion, such a change in the airfoil shape can be

expanded approximately into a linear function of AT, AC, and AL given as

y(x) = yo(x) + 0yo(X)0__._._AT + Oyo(X)0___.__AC + 0yo(x)0_____AL (3.27)

where

AT = T - To

AC = C - Co

AL = L- Lo (3.28)

Above, To, Co, and Lo are the initial values of these three shape parameters associated

with the initial airfoil shape yo(x) and the initial grid Xo.
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OyoCX) OyolX) and _ in Eq. (3.27) represent special patterns thatThe derivatives 0T , OC •

control the 'allowable changes in the airfoil's shape. The new mesh X can be defined in

a form given by Eq. (3.23) as

=)(o+AT'_ +AC.V2+AL._,3 (3.29)

where AT, AC, and AL are taken to be the design variables (or, equivalently, T, C,

and L are the design variables through Eq. (3.28)). The basic displacement vectors

V1, "v'2, and V3 can be obtained by the prescribed displacement method as previously

discussed. These vectors are obtained numerically through implementation of a finite-

element model, with each cell in the computational mesh considered as a plane stress

quadrilateral element. A finite-element matrix equation can then be formed to solve for

each basic displacement vector (i.e., the movements of all grid points) throughout the

elastic membrane model of the domain, in response to the nonzero boundary movement

that is specified through Eq. (3.28) for a unit change (or some other conveniently scaled

change) in each design variable. The finite-element matrix equation is linear with a

symmetric and banded coefficient matrix. This equation is, therefore, solved directly by

a single LU factorization; this LU factorization is then reused for multiple solutions (i.e.,

one solution "V'k for each design variable).

Equation (3.27) clearly represents a particular parameterization of the airfoil surface

that will only closely approximate the NACA four-digit parameterization (defined by Eqs.

(3.25) and (3.26)) if AT, AC, and AL are small. However, if remaining exactly within

or close to the "allowable shapes defined by the NACA 4-digit parameterization is not

necessary during the design, then Eq. (3.27) is a valid (but different) parameterization of

the airfoil shape, even for large AT, AC, and AL. Thus, this classic NACA four-digit

airfoil is presented only as an example.
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3.5 Algorithm for SD Calculation From a Marching Euler Code

In this section, a procedure is outlined to calculate SD's with the direct-differentiation

approach in three dimensions. The algorithm is the same as that used to solve the

nonlinear flow equations. This procedure is implemented in the computer code MARSEN,

which was developed for this study, and was used in a gradient-based design-improvement

study for the HSCT 24E. The procedure for calculating SD's with the adjoint-variable

approach is given in Appendix C. Note that to solve for the adjoint vector, the marching

must be done backwards (i.e., in the exact opposite direction to that of the flow).

The procedure for calculating SD's in three dimensions is a direct extension of the

method in two dimensions. The residual equation in the ith cross plane is differentiated

with respect to the uh component of the design variable vector _ by using the implicit

function theorem. Although the goveming fluid equations are nonlinear in the state

variables Q*, the resulting sensitivity equations are linear in the sensitivity of the state

variables f d_.o2.1, The residual in the i th cross plane is written as a function of the
[ dflk J"

state variables in the i, i-1, and i-2 cross planes, the grid coordinates )(, with explicit

dependence on the design variable ilk:

{Ri(Q_, Qi*__I,Q*2, _1, _k) } = {0} (3.30)

Here, the subscripts j and k on the state variables Q* are suppressed for simplicity.

Differentiating Eq. (3.30) with respect to the design variable /3k, then the following

equation results:

{dRi'_ [0Ri] d * [ 0Ri ] d * [ 0Ri ] d *
_kJ :[0QiJ{_3ik}+LOQi-l]{ Qi-,}+ { Qi-2d_3k [0Qi__, J d/3k )

[0Ri] dX oqRi/
(3.31)

In Eq. (3.31 ), the vectors { _ "1, d, _ j are the sensitivities of the fluid

variables with respect to the design variable/3 k in the i, i - 1, and i - 2 cross planes. The
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important point here is that upwind interpolationof the cell-centeredvaluesQ_ to the

cell facesfor evaluationof inviscid fluxes involvesstatevariablesin only the i - 1 and i

-2 cross planes because of the nature of inviscid, supersonic flow. The matrices [_],[_Ril r-_._._.,1
OQi_1 j and that are the same Jacobian matrices that are discussed in the implicit[0Qi__ J

tbrmulation. The Jacobian matrix [-_] is sparse and handed. This Jacobian matrix is

computed as [_-] -_- , where M represents the metric terms and X represents the

grid coordinates. Differentiation of the residual expression with respect to metric terms

is straightforward and is not discussed here. The vector {_} accounts for explicit

dependencies, if any, of the residual vector Ri on the design variable 3k. Equation (3.31)

can be written in standard form as

jaR, d • fOR, ] d *
_Q_iJ{ qi roni]- _}_- {Q'-_L_-¢_,-_J }+ {dO_2d/3k [OQi_2 J dflk }

[_R_1 dx JaR,

The sensitivities of the state variables in the i- 1 and i -2 cross planes

d'}{d" })
//f Qi-1 Qi-2

_,'l,'d-N--k , _ are known when sensitivities of the state variables in the i th

cross plane are solved with a space-marching algorithm in fully supersonic flow.

d

Equation (3.32)is linear in the unknown {_ }. By casting this equation in incremental

iterative form the following equation results:

_ m^ dQi [0Ri ] dQi } m + { dQi*-1L°-_i] La-Q_i__J

[ 0Ri 1 d • [OR_] dX ORi /
'k-[OQi_2j{ Qi-2} 'f- { } + {d/3k LOXJ (3.33a)

dQi_m+l = [mAdQi}_F_'dQi_m{_k J [ d_k [dflk J

m = 1, 2, 3, ... (3.33b)
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In Eq. (3.33), the left-hand-side matrix operator [_] is the approximation of
[OQi J

_onvon_n_oo_,.ematn_[_]_"___.o_on_u_.t.at_tm_o__.__toraUvo.roc_s_
convcrgcnt. For the prcscntstudy,the first-orderupwind discrctizationof thc Jacobian

matrix is used as the matrix operator.A time term which acts as an under-relaxation

paramctcr is added to the left-hand-sidematrix operator.Equation. (3.33)is solvcd for

each cross plane,and thc vcctor {_ ],iscalculatedovcr the whole domain. After thisd/3_ j

complctc vector is known, the sensitivity of the system response of interest with respect

to the dcsign variable can bc computed with Eq. (3.2).



Chapter 4

COMPUTATIONAL RESULTS

In this chapter, the SD results in two dimensions are given in separate sections for

two sample airfoil problems: subsonic low-Reynolds-number laminar flow and transonic

high-Reynolds-number turbulent flow. Sample 3-D SD results are given for geometric

and non-geometric design variables in separate subsections.

4.1 Subsonic Airfoil, Low Reynolds Number Laminar Flow

The first problem is subsonic low-Reynolds-number, constant-viscosity laminar flow

over an NACA 1406 airfoil. Flow is considered at a freestream Mach number Moo

= 0.6, an angle of attack a = 1.0 °, and a Reynolds number Re = 5.0 x 103 . A C-

mesh computational grid of 257 x 65 points is used, with the "lift-corrected" far-field

boundary placed five chords from the airfoil; points are clustered near the airfoil surface

to assist with the resolution of gradients in this vicinity. The cell-centered finite-volume

formulation method with higher upwind differencing for the inviscid terms and central

differencing for viscous terms is used. The spatially split approximate factorization

',algorithm is used to achieve the converged (i.e., the average global error is reduced

to machine-zero) steady-state solution {Q*} of the discrete, nonlinear flow equations.

Figure 4.1 is a plot of the computed steady-state pressure coefficient Cp on the surface

of the airfoil. The computed lift, drag, and pitching moment coefficients obtained are

CL = 0.18148, CD = 0.41703 E-01, and CM = - 0.23718 E-01.

The SD's of CL, CD, and CM are computed with respect to six independent design
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variables:airfoil maximumthicknessT; airfoil maximumcamberC; locationof maximum

camberL; angleof attacko_: freestream Mach number Mo_; and Reynolds number Re.

The three design variables related to geometric shape (T, C, and L) are parameters that

together with well-known analytical expressions (given, for example, in Ref. [39]) define

the x and y coordinates on the surface (and, hence, the shape) of the NACA four-digit

airfoil. The SD's are computed with three methods: the direct-differentiation method:

the adjoint-variable method; and the "brute-force" finite-difference method. Application

of these three methods is described subsequently in greater detail: comparisons of the

computational results are summarized in Table 4.1. For the direct-differentiation and the

adjoint-variable method, noted that the direct-solver approach was abandoned because of

storage restrictions. In this case, ("in core") storage required by the banded matrix far

exceeded the 40-megaword storage limit placed on the standard Cray-2 computer queue.

For the direct-differentiation method, SD's are calculated through the iterative

solution of the incremental form (i.e., Eqs. (3.15), (3.16), and (3.17)) of six large systems

of linear equations (one system for each of the six design variables considered here).

The well-known spatially split approximate factorization algorithm [66] is used, with a

constant Courant number of 45 (i.e., local time stepping is used). This Courant number

was determined by numerical experimentation to be approximately the optimum for

computational efficiency for this sample problem. An eight- order-of-magnitude reduction

in the average global error is the specified convergence criterion for solving each of the

six linear systems; an average of 683 iterations is required in each case to achieve this

convergence criterion.

For the adjoint-variable method, SD's are calculated through the iterative solution

of the incremental form (i.e., Eqs. (3.18) and (3.19)) of three large systems of linear

equations, one system for each of the three system responses considered here. Again

the approximate factorization algorithm is used, and a constant Courant number of 45 is

determined to be the optimum. In this case, an average of 1743 iterations is required to
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obtainaneight-order-ofmagnitudeaverageglobal error reduction,which is the required

convergencecriterion for eachof these three linear system solutions.

In application of the "brute-force" finite-difference method, central finite differencing

is used, with a forward and backward perturbation of each design variable (A_ k =

+5.0E-06 x /3k). Machine-zero converged, steady-state solutions of the discrete

nonlinear flow equations are obtained for each forward and backward perturbation of each

design variable. Thus, for six design variables a total of 12 solutions to the nonlinear

flow equations are produced. The approximate factorization algorithm is again used to

solve the flow equations; to reduce computational work during these computations, the

LU-factored block-tridiagonal systems are stored and are reused for 10 iterations; after

10 iterations these terms are reevaluated. (See Ref. [65] for additional details in regard

to this strategy, which was shown with numerical studies to be near optimum.)

The SD's calculated with the direct-differentiation method agree closely with those

computed with the adjoint-variable method. However, the computational work required

by the latter method (in which a total of three linear systems are solved) exceeds that of

the former method (in which a total of six linear systems are solved). In addition, the

convergence rates obtained with the latter method were significantly slower than those

obtained with the former method in this sample problem. The SD's obtained by using

finite differencing also agree closely with those obtained from the other two methods.

In all comparisons, the finite-difference method was much more costly computationally

than either the direct-differentiation or the adjoint-variable method.



47

-Cp 0,0 ,_""""i";':"::: ::• • • m HI m m m m mmmmmmm_m__m
mumnmumm • • • • • • • m nmnmmulummmmm_

-1.5
0.0 0.2 0.4 X/C 0.6 0.8

Fig. 4.1 Chordwise distribution of surface pressure coefficient NACA

1406 airfoil, Moo = 0.6; ot = 1.0°; Re = 5x 103. laminar flow.
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Table 4.1 Summary of Computational Results for NACA 1406 Airfoil:

Subsonic Low-Reynolds-Number Laminar Flow Sample Problem

Solution

method
Total CPU Design

time variable
dCL dCo

(Secs)* d---ft-
dCM

Direct-

Differentiation

method,

approximately

factored

incremental

scheme

458

T -1.392 E+00 +2.019 E-01

C +6.583 E+00 +7.583 E-02

L -1.154 E-02 +5.544 E-05

a +6.122 E+00 +9.181 E-02

Moo +5.428 E-03 +1.628 E-02

Re +5.958 E-06 -4.912 E-06

+1.805 E-01

-2.240 E+00

-2.122 E-02

-3.168 E-02

-4.732 E-03

-6.564 E-07

Adjoint

-variable

method,

approximately

factored

incremental

scheme

579

T -1.392 E+00 +2.019 E-01

C +6.583 E+00 +7.583 E-02

L -1.154 E-02 +5.544 E-05

a +6.122 E+00 +9.181 E-02

M_ +5.428 E-03 +1.628 E-02

Re +5,958 E-06 -4.912 E-06

+1.805 E-01

-2.240 E+00

-2.122 E-02

-3.168 E-02

-4.732 E-03

-6.564 E-07

"Brute -force"

finite difference

method

7404

T -1.392 E+00 +2.019 E-01 +1.805 E-01

C +6.583 E+00 +7.583 E-02 -2.240 E+00

L -1.154 E-02 +5.548 E-05 -2.122 E-02

a +6.122 E+00 +9.181E-02 -3.168 E-02

M_ +5.426 E-03 +1.628 E-02 -4.732 E-03

Re +5.958 E-06 -4.912 E-06 -6.564 E-07

*All calculations performed on Cray-2 computer.
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4.2 Transonic Airfoil, High Reynolds Number Turbulent Flow

The second sample problem is transonic high-Reynolds number turbulent flow over

an NACA 1406 airfoil. The variation of the molecular viscosity with temperature

is computed with Sutherland's law, and turbulence is simulated with the well-known

'algebraic model of Baldwin and Lomax [78]. The flow is considered at a freestream Mach

number M_ = 0.8, an angle of attack _ = 1.0 °, and a Reynolds number Re = 5.0 x 10 6. A

C-mesh with 257 x 65 grid points is again used with the lift-corrected far-field boundary

placed five chords from the airfoil; clustering of points near the surface is tighter in the

present example than in the previous example because of the higher Reynolds number.

The cell-centered finite-volume formulation method with higher upwind differencing for

the inviscid terms and central differencing for viscous terms is used. The spatially split

approximate factorization algorithm is used to achieve a machine-zero converged, steady-

state solution. Figure 4.2 is a plot of the computed steady-state pressure coefficient Cp

on _he surface of the airfoil, and Fig. 4.3 is a complete contour plot of the static pressure,

which clearly shows the presence of a shock wave on the suction surface of the airfoil.

The computed lift, drag, and pitching moment coefficients are CL = 0.41662, Co =

0.77501 E-02, and CM = - 0.45633 E-01.

The SD's of EL, CD, and C M are computed with respect to the same six independent

design variables previously considered. The direct-differentiation, the adjoint-variable,

and the "brute-force" finite-difference methods are also applied in computing these

SD's. However, for the direct-differentiation and adjoint-variable methods, laminar

and turbulent viscosities are assumed to be constant with respect to the field variables

{Q*} and the computational grid {X}. That is, in the analytical construction of all

derivatives (including the Jacobian matrices [_._] and [o_o__]), which are used to calculate

the SD's, both laminar and turbulent viscosities are constant. For this reason, the

direct-differentiation and the adjoint-variable methods cannot give SD's that are exact,

consistently discrete forms. Thus, the results from the "brute-force" finite-difference
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procedureareconsideredto be more accuratein this example. This approximationis

madebecauseof the complexity involved in the consistenttreatmentthe derivativesof

the turbulentviscosity. In fact,a fully consistenttreatmentof thesetermsis not possible

at points where this turbulencemodel is not continuouslydifferentiable. Application

of the three methodsis describedsubsequentlyin greaterdetail. Comparisonof the

computationalresultsaresummarizedin Table4.2.

For the direct-differentiationand adjoint-variablemethods,the SD's arecomputed

with the spatially split approximatefactorization algorithm to iteratively solve in

incrementalform the required linear systemsthat have been described. With both

methods,a constantCourantnumberof 30 is numericallydeterminedas the optimum

for the computations.In all casesaneight-order-of-magnitudereductionin the average

globalerror is enforcedfor convergence.For thedirect-differentiationmethod,anaverage

of 1619iterationsis neededto achieveconvergence;for the adjoint-variablemethod,an

averageof 1798iterationsis required.Finally, the"brute-force" finite-differencemethod

is appliedherein a manneridenticalto that describedin the previoussampleproblem.

The SD's calculatedwith the direct--differentiationmethod and with the adjoint-

variable methodagreewell, as expected. In addition, the total computationalcost of

the direct-differentiationmethodis approximatelytwice the cost of the adjoint-variable

method.This resultis expectedbecausewith the direct-differentiationmethodsix linear

systemsaresolvedcomparedwith only threefor theadjoint-variablemethod.The SD's

calculatedusingthe methodof finite differencesarecomparedwith thosefrom the other

two methods: somediscrepancyoccurs in the resultsbecauseof the aforementioned

neglectedconsistenttreatmentof the viscosity terms. For the most part, the agreement

betweenthesecalculatedderivativesis good.Themostsignificantdiscrepancyis notedin

the SD's of C_. with respectto maximumairfoil thicknessT, wherethederivativesdiffer

by afactor of approximatelythreeto four. However,this SDis smallerin magnitudethan



51

thelargestderivatives.As in the first sampleproblem,the"brute-force" finite-difference

methodis muchmorecostlycomputationallythaneitherthe direct-differentiationor the

adjoint-variablemethod.
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Fig. 4.2 Chordwise distribution of surface pressure coefficient. NACA

1406 Airfoil; Moo = 0.8; a = 1.0°; Re = 5x 106; turbulent flow.
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Fig. 4.3 Static pressure contour plot. NACA 1406 airfoil,

M_ = 0.8; c_ = 1.0°; Re = 5x 106; turbulent flow.
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Table 4.2 Summary of Computational Results for NACA 1406 Airfoil:

Transonic High-Reynolds-Number Turbulent Flow Sample Problem

Solution

method
Total CPU Design

time variable

(Secs)* 3k dCL dCD dCM

Direct-

Differentiation,

approximately
factored

incremental

scheme

1052

T +2.275 E-01 +2.654 E-01

C +1.942 E+01 +6.511E-01

L +1.338E-01 -1.151E-02

a +1.198 E+01 +4.200 E-01

M_ +1.772 E+00 +1.921E-01

Re +4.145 E-09 -4.881E-10

-3.124 E-01

-5.516 E+00

-5.589 E-02

-4.675 E-01

-5.430 E-01

-4.397 E-10

Adjoint

-variable

method,

approximately

factored

incremental

scheme

586

T +2.275 E-01 +2.654 E-01

C +1.942 E+01 +6.511E-01

L +1.338 E-01 -1.151E-02

a +1.198 E+01 +4.200E-01

M_ +1.772 E+00 +1.921E-01

Re +4.145 E-09 -4.881E-10

-3.124 E-01

-5.516 E+00

-5.589 E-02

-4.675 E-01

-5.430 E-01

-4.397 E-10

Brute-force

finite-difference

method

8526

T +7.919 E-01 +2.744E-01

C +2.063 E+01 +6.776 E-01

L +1.107 E-01 -1.174 E-02

a +1.299 E+01 +4.346 E-01

M_ +2.040 E+00 +1.969 E-01

Re -1.185 E-09 -2.829 E-10

-4.153 E-01

-5.770 E+00

-5.350 E-02

-6.328 E-01

-5.972 E-01

+1.497 E-10

*All calculations performed on a Cray-2 computer.
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4.3 Comparison of SD Results in Three Dimensions

The 3-D Euler equations are solved here for a fully supersonic flow with the

space-marching method described in Chap. 2. The method is an upwind cell-centered

finite-volume scheme that is higher-order accurate (second-order streamwise and third-

order in the cross plane) and fully conservative in all directions, including the streamwise

(marching) direction. The method is locally time iterative in each cross plane with

a spatially split approximate-factorization approach. The Mach 2.4 filleted wing-body

surface definition was processed with the method given in Ref. [79] and a volume grid

subsequently generated as in Ref. [80]. Figure 4.4 is a view of the HSCT 24E (High-

Speed Civil Transport) filleted wing-body configuration, including the wake portion of

the computational grid.

4.3.1 Geometric Design Variables

Comparisons are made of the SD's obtained with central finite differencing (SDFD)

and the IIM for several geometric variables. The geometric design variables are those

variables that define the surface of the HSCT 24E wing. Details of the wing-geometry

parameterization are given in Appendix D. Grid generation and grid sensitivity for

the present study are obtained by automatically differentiating the surface/volume-grid

generator (Refs. [79, 80]). The flight conditions chosen are Moo= 2.4, c_ = 1%/3 = 0 °.

The geometric SD results are computed on a half-space grid (37 streamwise x 49

circumferential × 15 normal points) with a symmetry plane at y = 0; some forces,

moments, and SD's are not balanced by their images and, therefore, do not vanish.

These nonvanishing components do not affect the geometric SD comparisons for the six-

component force and moment coefficient (Cx, Cy, Cz, CM_, CM,, CM_) SD's with respect

to the geometric design variables. In obtaining the SDFD, analysis solutions at design-

variable perturbations of approximately 10 -5 from the baseline were run from restart

solution files and converged to a relative residual reduction of 10-ti. This process results

in an appreciable time savings for obtaining the SDFD, at least from the present CFD



56

algorithm and code. The spatially split approximate-factorization'algorithm is used to

solve the sensitivity equation in each cross plane with IIM. A constant Courant number of

10 is used for the computations. In obtaining the SD's via the IIM (SDQA), the relative

derivative-residual reduction was done to several levels: 10-3 (3 orders of magnitude

(OM)), 10-7 (70M), and 10-tl (11 OM). Comparisons are shown for both accuracy and

computational efficiency.

Six SD's are compared with respect to three wing-section thickness ratios (t/C) in

Table 4.3. This table has five parts: part (a) gives the 18 SDQA; parts (b), (c), and (d)

show the 18 ratios (SDFD/SDQA) for 3, 7, and 11 OM, respectively; and part (e) gives

computational time comparisons. Table 4.3(a) shows that these derivatives range in size

over nearly 30M and are both positive and negative. Tables 4.3(b)-(d) show that the

SDQA agree with the SDFD to between three and four significant figures. Table 4.3(e)

shows the computation of SDQA to be 1.5 to 2 times faster than the computation of the

efficient SDFD (i.e., with restarts, central finite-difference time is about 2.3 rather than

6 times a baseline analysis solution time). The speed-up depends on the SD accuracy

required and the analysis code convergence performance from restarts.

Tables 4.4, 4.5, and 4.6 compare similar SD results for sample section twist, camber,

and flap-deflection geometric variables, respectively. For these cases, however, only the

11 OM SDQA comparisons are shown. Again, these derivatives vary over several OM in

size; however, agreement with the SDFD remains better than to three significant figures;

the derivatives are obtained about 1.5 times faster than those derivatives obtained with

the best SDFD computation.

Comparison of the six SD's with respect to three wing planform variables is shown

in Table 4.7. Here, SD comparisons are shown at all three SDQA convergence levels.

The SDQA agree with the SDFD to about four significant figures; in addition, they are

obtained faster with the IIM.
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4.3.2 Nongeometric Design Variables

As a consequence of using the IIM, the linear sensitivity equations are solved for the

SD's of the field variables in each cross plane with the identical space-marching algorithm

that is used to solve the nonlinear flow equations. The computational grid used for this

study (37x 121x15, with 37 points in streamwise direction, with 121 circumferential

direction, and 15 points in the normal direction) is different from the grid used to study

the geometric design variables. Force and moment coefficients for the flight conditions

M_ = 2.4, a = 0 °, /3 = 0 ° are shown in Table 4.8. The SD's of six output functions

(Cx,Cy, Cz,CMx, CMy, CMz) with respect to Mach, Alpha, and Beta are given in Table

4.9(a). Calculated SD ratios, (forward finite differences with a perturbation size, A_/k

= 1.E-05 to quasi-analytical derivatives) are shown in Table 4.9(b); these ratios are

seen to be unity to four significant figures. Table 4.9(c) shows computational time

comparisons for the calculation of SD's with using both forward finite differences and

the quasi-analytical IIM; all times are given in terms of a baseline time. The measure of

convergence levels used for the solutions of the nongeometric design variables is given

in the footnote to Table 4.9(c). Three nonlinear flow solutions, which correspond to the

perturbed flow conditions, are obtained by using the freestream conditions as the initial

guess. The computational cost of the finite-difference method is approximately seven

times greater compared with that for quasi-analytical method.
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Table 4.3 (a) Geometric Section Thickness SD's of Force and

Moment Coefficients With Quasi-Analytical Incremental Iterative

Method (QAUM) for HSCT 24E at Moo = 2.4, c_ = 1°, and 13 = 0 °

SDQA Scaled design variables

Root t/c Break t/c Tip t/c

+3.8635 E-04 +2.8663 E-04 +3.3805 E-05

-2.4830 E-05 -2.8052 E-04 -2.0875 E-05d_k

+4.5475 E-04 +6.1267 E-05 +4.7231 E-06

-_k +2.0925 E-05 -1.2866 E-05 +6.1225 E-07

dCM

+3.4438 E-06 -5.7055 E-06 -2.0632 E-06

"_k +1.7229 E-04 -7.6030 E-05 -1.3698 E-05

Table 4.3 (b) Geometric Section Thickness SD Ratios t'Finite Difference
QA J

Design variables/3

Root t/c Break t/c Tip t/c

1.0000 0.9999 1.0000

1.0054 0.9997 1.0004
d_k

0.9995 0.9999 1.0011

dCM 0.9984 1.0005 1.0023

1.0431 1.0018 1.0007
Bk

0.9997 0.9996 1.0003

(Reduction of 30M)
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Table 4.3 (c) Geometric Section Thickness SD Ratios (Finite QADifference)

sD_9_eaz Design variables
SDQA

Root t/c Break t/c Tip t/c

0.9999 0.9999 0.9999
d_k

1.0000 0.9999 1.0000

0.9999 0.9999 1.0000
d ,Bk

1.0000 0.9999 1.0000
dBk

0.9999 1.0000 1.0000

dCu_ 1.0000 0.9999 0.9999
dBk

(Reduction of 70M)

Finite Difference
Table 4.3 (d) Geometric Section Thickness SD Ratios ( QA J

Design variables

Root t/c Break t/c Tip t/c

0.9999 0.9999 0.9999

1.0000 0.9999 1.0000
dBk

0.9999 1.0000 0.9999

"_k 1.0000 0.9999 1.0000

0.9999 1.0000 1.0000

1.0000 0.9999 0.9999

(Reduction of 11 OM)



61

Table4.3 (e) GeometricSection-ThicknessSD Computational-TimeComparisons

SolutionMethod Numberof solutions Ratio

Baseline

Centralfinite differencing

Quasi-analytical(3 OM)

Quasi-analytical(70M)

Quasi-analytical(11 OM)

1 1.000"

6 1.289

3 0.2032

3 0.2817

3 0.3714

_-_ to* Baselinesolutionrun time for (Rim,) reduction
c ---- 10 -11 on Cray-2 is 152 sec.
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Table 4.4 (a) Geometric Twist SD of Force and Moment Coefficients

With QAIIM for HSCT 24E at Mo_ = 2.4, a = 1°, and _ = 0 °

SDQA Scaled design variables

Root twist Break twist Tip twist

-3.6909 E-04 +2.3174 E-05 -1.7165 E-07
d_3k

+5.3123 E-03 - 1.0226 E-04 1.7900 E-06

+4.8539 E-03 -1.2541 E-03 -5.6965 E-06
d_k

"_k +1.0684 E-04 -1.3584 E-04 -1.1203 E-06

-1.9188 E-03 +3.5747 E-04 +2.1336 E-06
dBk

+1.8410 E-03 -3.6119 E-05 -1.060 E-06
dak

Table 4.4 (b) Geometric Twist SD Ratios _Finite Difference,_' QA j Except Terms of O(_)

Design variables/_

Root twist Break twist Tip twist

0.9999 1.0000 a

1.0000 0.9999 0.9999

1.0000 1.0000 1.0007dak

1.0000 1.0000 0.9999

1.0000 1.0000 1.0013

0.9999 0.9998 1.0000
d_k

a Ratio for extremely small quantities is meaningless.
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Table 4.4 (c) Computational Time Comparisons

Solution Method Number of solutions Ratio

Baseline 1 1.000"

Central finite differencing 6 1.0755

Quasi-analytical 3 0.3141

* See note at Table 4.3.
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Table4.5 (a) GeometricCamberSurfaceSD of Forceand Moment
CoefficientsWith QAIIM for HSCT 24E at M_ = 2.4, c_ = 1°, and 3 = 0 °

SDQA Scaled design variables /3

Root C Break C Tip C

-6.7160 E-06 +1.6566 E-05 -9.7360 E-08

2.4396 E-05 -3.0371 E-05 +7.3377 E-08
d_k

+6.1329 E-05 -7.8495 E-05 +1.3783 E-06

"_k -7.9197 E-06

-6.7634 E-05
d_k

-_k +1.0487 E-05

-9.2387 E-06

+6.4016 E-07

-8.5257 E-06 +3.8453 E-08

+3.4155 E-07

-4.6827 E-07

Table 4.5 (b) Geometric Camber Surface SD

Ratios (Finite Difference_ Except Terms of O(e)QA :

Design variables

Root C Break C Tip C

0.9999

ac_ 0.9999
dflk

0.9999

"_k 1.0000

dCM
0.9999

0.9999

1.0000 a

0.9999 a

1.0000 1.0003

1.0000 1.0003

1.0000 1.0003

0.9999 a

a See note at Table 4.4.
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Table4.5 (c) GeometricCamberSurfaceSD Computational-TimeComparisons

Solutionmethod Numberof solutions Ratio

Baseline 1 1.000"

Central finite differencing 6 0.883

Quasi-analytical 3 0.3084

* Seenoteat Table4.3.
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Table4.6 (a) GeometricFlap-DeflectionSD of Forceand Moment
CoefficientsWith QAIIM for HSCT 24E at Moo= 2.4, a = 1°, and fl = 0 °

SDQA Scaled design variables

Flap I Flap II Flap III Flap IV

+7.7336 E-06 +5.5417 E-06 +7.2944 E-08 +7.3339 E-07d_k

-6.5184 E-06 +2.3167 E-05 -4.4830 E-08 +5.5264 E-06

-2.1190 E-04 9.6692 E-04 -4.6974 E-06 +2.8558 E-04d/3k

-3.0110 E-05 +1.2727 E-04 -9.2512 E-07 +5.5924 E-05

+5.8343 E-05 -3.1718 E-04 +1.5573 E-06,t_k -9.7259 E-05

-3.6965 E-06 +9.5445 E-06 -3.0774 E-08 +2.0969 E-06dak

Table 4.6 (b) Geometric Flap-Deflection SD Ratios (Finite Difference' QA ) Except Terms of O(e)

Design variables

Flap I Flap II Flap IIl Flap IV

0.9999 0.9999 a a

1.0002 1.0001 a 0.9997

0.9999 1.0000 0.9998 1.0003

0.9999 1.0000 0.9998d_k 1.0006

dCM

0.9999 1.0000 0.9998 1.0006

1.0000 1.0000a_k a 1.0003

a See note at Table 4.4.
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Table4.6 (c) GeometricFlap-DeflectionSD Computational-TimeComparisons

Solutionmethod Numberof solutions Ratio

Baseline 1 1.000"

Central finite differencing 8 0.877

Quasi-analytical 4 0.3439

* Seenoteat Table4.3.
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Table4.7 (a) GeometricPlan/brmSD of ForceandMoment Coefficients
With QAIIM for HSCT 24E at Moo= 2.4, c_= 1°, and /3 = 0 °

SDQA Scaled design variables

Root chord Break chord Tip chord

-_ -1.5421 E-02 +1.0243 E-03 +2.1698 E-05_k

+1.6117 E-01 -5.0936 E-04 +7.1228 E-05

-_ +4.7495 E-03 7.7265 E-04 +4.6021 E-05_k

+7.1231 E-04 +1 1721 E-04 +1.7400 E-05d/3k

"_k -7.9255 E-03 -1.9745 E-04 -2.3264 E-05

+2.4522 E-02 -2.9745 E-04 -5.9707 E-05dak

Table 4.7 (b) Geometric Planform SD Ratios (Finite DifferenceQA )

Scaled design variables

Root chord Break chord Tip chord

1.0000 1.0000 0.9999

1.0000 1.0000 0.9991

1.0018 0.9998 0.9999

1.0009 0.9998 1.0001d3k

1.0004 0.9998 0.9997d/3k

1.0002 1.0000 1.0005dJk

(Reduction of 30M)
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Table4.7 (c) GeometricPlanformSD Ratios (Finite Difference_
QA J

so__0_r.v_
SDQA Scaled design variables 3

Root chord Break chord Tip chord

1.0000 0.9999 0.9999d¢k

1.0000 0.9999 1.0000

-_ 0.9999 1.0000_k 1.0000

-_ 0.9999 1.0000 0.9999

0.9999 1.0001 1.0000ak

"_k 1.0000 0.9999 0.9999

(Reduction of 70M)

Table 4.7 (d) Geometric Planform SD Ratios (Finite Difference x
QA )

Scaled design variables

Root chord Break chord Tip chord

dBk 0.9999 0.9999 0.9999

0.9999 0.9999 1.0000

0.9999 1.0000 1.0000

0.9999 1.0000 0.9999

0.9999 1.0001 1.0000

1.0000 0.9999 0.9999

dBk

d dk

(Reduction of 11 OM)
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Table4.7 (e) GeometricPlanform SD Computational-TimeComparisons

Solutionmethod Numberof solutions Ratio

Baseline

Central finite differencing

Quasi-analytical( 30M)

Quasi-analytical(70M)

Quasi-analytical(11 OM)

1 1.000"

6 1.322

3 0.2046

3 0.2829

3 0.3606

* Seenoteat Table4.3.
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Table4.8 ForceandMomentCoefficientsfor HSCT24EatMoo= 2.4,o_= 0 °, and/3 = 0 °

Cx (_ Drag) 0.0044

Cy (,_ Side) O(_)

Cz (_ Lift) --0.0133

CMx (Roll) < O(e)

CMy (Pitch) 0.0055

CMz (Yaw) < O(e)

(R__._.) reduction to e = 10 -s on Cray-2 is 827 sec.a Baseline solution runtime for R,m,

Table 4.9 (a) Nongeometric SD of Force and Moment coefficients

With QAIIM for HSCT 24E at M_ = 2.4, _ = 0 °. and/3 = 0 °

SDQA Design Variables

Moo c_ /3

-0.0024 -0.0225 O(e)dflk

< O(e) O(e) -0.0614

+0.0079 +1.4714 O(10e)dflk

< O(e) < O(e) -0.0094
dflk

-0.0033 -0.3244 O (10e)

dCM._ < 0(_) O(e) -0.0009
dflk
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l Finite Difference
Table 4.9 (b) Nongeometric SD ratios 'Qua.si-AnalyticalJ except terms of 0(_)

SD_P_r.o_ Design Variables/_
SDQA

M_ a d

0.9999 1.0000d_k a

a a 0.9999

dC_ 0.9999 1.0000
d_k a

a a 0.9999

0.9999 1.0000 a

a a 0.9999

a Ratio for extremely small quantities is meaningless.

Table 4.9 (c) Nongeometric SD Computational-Time Comparisons

Number of
Solutions Ratio

solutions

Baseline 1 1.000 a

Central finite differencing 6 3.426

Quasi-analytical 3 0.487



Chapter 5

HSCT AERODYNAMIC OPTIMIZATION STUDIES

The purpose of the initial studies presented in this chapter is simply to indicate the

feasibility of using the SD obtained by the IIM in aerodynamic design optimization or

MDO procedures. A generic MDO via SA for two disciplines is flowcharted in Fig. 5.1.

These initial applications of the 3-D marching Euler code (MARSEN) with efficient

geometric SD calculations are for aerodynamic optimization studies in which the CFD and

grid-generation codes are considered as separate disciplines. The optimization procedure

is demonstrated in the present study for 3-D inviscid, fully supersonic flow over the

HSCT 24E configuration.

5.1 Grid Generation and Grid Sensitivity

The geometry processing and grid-generation codes used here [79, 80] take as input

the simplified numerical descriptions of configuration components in a wave-drag, or

Harris, format. The various component surfaces are first intersected and filleted into

a continuous surface; then suitable computational grids are generated. A sample Euler

marching grid generated for the HSCT 24E is given in Fig. 5.2. For the present study,

geometric SD are propagated from a design-variable parameterization of the HSCT 24E

configuration through these surface-processing and volume-grid-generation codes. These

latter codes have been linked together, front ended with a 42-variable wing-geometry

parameterization [81, 82], and automatically differentiated. The parameterization [81] of

the HSCT 24E wing geometry is divided into three variable types: 7 planIbrm variables,
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15 section-thicknessvariables(5 each at the root, break, and tip sections), and 20

camber-surface variables. The geometry parameterization used herein is discussed in

appendix D; the camber parameterization used in Ref. [81] has been replaced. As in

Ref. [81], propagation of the geometric SD through the automated geometry package is

accomplished with the AD [83, 84] precompiler tool ADIFOR (..A_utomated D_...Ilfferentiation

of FORtran) [9]). Execution of the ADIFOR-enhanced automated geometry package then

calculates not only the grid but also the grid SD's with respect to the design variables

used in the geometry parameterization. Both are required as input to the flow code,

which has been differentiated "by hand".
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Fig. 5.2 Automated geometry and grid generation for marching Euler code.
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5.2 Sample 3-D Optimization Results

The Automated Design Synthesis (ADS) program [85] is used for the optimization

code in these studies, basically in a "black box" manner. The two disciplines, CFD

and the geometry and grid generation, are coupled sequentially at each optimization

step: that is. information passes from the geometry to the grid generation to the flow

code with no feedback within each step. The design variables for thickness, camber, flap

deflection, and planform have been activated separately to ascertain whether the predicted

changes are reasonable when only a supersonic cruise point is considered. The fact that

other discipline codes are not participating in the MDO requires that side constraints

be specified on the design variables (i.e., with no structural input, minimum thicknesses

must be set). Use of the ADS code requires that three options be selected: a strategy,

an optimizer, and a one-dimensional search. The following options have been selected

for the present constrained optimization results: the sequential quadratic programming

strategy, the modified method of feasible directions optimizer, and the Golden section

line search. Function and first-order derivative information is given to the ADS code.

Because the SD's obtained via the IIM are local derivatives, this combination of methods

in ADS appears to provide the most consistent optimization results. However, many

function evaluations are required by the selected search procedure.

The HSCT 24E filleted wing-body configuration generated at NASA Langley

Research Center is the baseline for these shape-design-improvement studies. These

sample studies are done separately for 15 wing-thickness variables, both 28 and 8 wing-

camber variables, 4 flap-deflection variables, and 5 wing planform design variables. A

summary of results for each of these five studies is given (Tables 5.1 to 5.6, which also

will be discussed individually). For these studies, the flow conditions are: M_ = 2.4,

= 1°, and d3 = 0 ° (also noted in each table title). Convergence of both the nonlinear

iterative flow analysis and the linear iterative SA was to a relative residual reduction of

6 OM for all required solutions. Extensive use was made of restart solution files for the
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flow analysis solutions.

5.2.1 Drag Reduction: Wing-Section Thickness Design Variables

Sample results for the HSCT design improvement study with wing-section thickness

variables are given in Table 5.1. Table 5. l(a) is a summary and 5. l(b) gives the initial

and final values of the 15 design variables. The 15 thickness design variables are the 5

parameters listed in Table D3 in Appendix D at the wing root, break, and tip locations.

The wing thickness is linearly lofted from root to break and break to tip to supply thickness

information at all other wing stations (Table D1 in Appendix D). The objective function

is drag minimization, and the wing-root bending moment and lift are constrained to their

baseline values; that is,

minimize Cx

Cxo

subject to CM_ < 1.0

CMxo --

Cz
>1.0

Czo -

The drag improvement evident in Table 5. l(a) is about 10.5 percent, and both constraints

are active (within +0.5 percent of the baseline value). This improvement was obtained in

8 optimization steps, which required 117 function evaluations and 8 gradient evaluations;

the Cray-2 run time was approximately 1.2 hours.

With regard to the run time of the codes on the Cray-2 for a relative residual reduction

of 6 OM with 15 design variables, the initial 267 seconds consists of about 67 seconds

for an analysis run from a dead start and 200 seconds for the 15 SD evaluations by the

IIM. If all function evaluations, including those for the central SDFD required for this

study, were done from a dead start (i.e., with a uniform free stream), then the total CPU

time would have been about 23,920 seconds or 6.64 Cray-2 hours. Therefore, the total
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time savings with the use of restart files is about 18,750 seconds: the savings due to the

use of SD evaluations via the IIM is an additional 800 seconds. Note, however, that the

time savings due to the use of restart files is code dependent and appears to be large for

the present analysis code; the time savings for using SD evaluations via the IIM instead

of using SDFD from a dead start would be about 14,480 seconds.

For supersonic flow considerations "alone, the wing would be expected to become

thinner, which occurs as shown in Fig. 5.3. Table 5.1 (b) shows the initial and final values

of the 15 thickness design variables and indicates those variables that are influenced by

the side constraints (bounds). For 6 of the 15 variables, the side constraints are active

(within 5 percent of the specified bounds, which for the thickness variables were taken

to be _+ 50 percent of the baseline values). These active side constraints tend to "trap"

the optimization in a "comer" of the design parameter space, which may not be realistic

because the nonparticipation of the other disciplines has only been mimicked by the side

constraints.
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5.2.2 Lift Improvement: Wing-Section Camber Surface-Elevation Design Variables

Sample results for the HSCT lift-improvement studies with wing-camber surface-

elevation design-variables are given in Tables 5.2 and 5.3 for cases with 28 and 8 design

variables respectively. In these studies, the camber design variables at the first two

wing stations were held constant because the body camber line of the filleted wing-body

configuration was fixed and because the wing lofting to determine the body intersection

and filleting involved these first two wing stations. The camber surface, for most of the

baseline HSCT 24E outboard wing, appeared to vary linearly from just beyond the break

to the tip. Therefore, 28 camber variables were active in the first study: 4 each (Table D4

in Appendix D) at wing stations 3 through 8 (break) and at wing station 18 (tip) (Table

D1 in Appendix D) with linear lofting from break to tip. Eight camber variables were

active in the second study: four each at both wing station 8 (break) and at wing station

18 (tip) with a parabolic lofting from root to break (i.e., a curve that passes through the

break variable and the fixed camber variables at wing stations 1 and 2) and with a linear

lofting from break to tip. For these studies, the objective and the constraints are

minimize Cz

Czo

subject to CM-----'-_< 1.0

CM,o -

CX

<1.0
Cx0

As shown in Table 5.2(a), a lift improvement of about 7 percent was obtained in

nine optimization steps, and the constraints were active. The nine optimization steps

required 136 function evaluations and 9 gradient evaluations for 28 design variables. If

all function evaluations and central SDFD were done without the restart, the total CPU

time would be approximately 42,900 seconds rather than 6680 seconds. The camber
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design-variable changes for this improvement study are given in Tables 5.2(b)-(e), for

each of the four camber parameters respectively. For 22 of the 28 variables, the side

constraints are active.

Contour plots of the camber surface elevation Zc are compared in Fig. 5.4. The con-

tour plot for the HSCT 24E is shown in Fig. 5.4(a), and the plot from the lift-imrovement

study with 28 wing-camber design variables in Fig. 5.4(b). The latter plot appears to be

rougher than that for the baseline. The difference is more evident in Fig. 5.5, which

compares the spanwise variations of the camber-surface elevations at the wing midchord

and the wing trailing edge. As noted in Appendix D, this camber surface elevation

includes not only the customary camber parameter A but also a wing-twist parameter

ZTE and camber-inflection parameter E. No spanwise control or smoothing was enforced

in the 28-variable optimization case.

The purpose of the 8-variable study was to add spanwise control on the adjustment

of the wing-section camber design variables. The effect is evidenced in both Fig. 5.4(c)

and Fig. 5.5 as a much smoother spanwise variation of the camber surface elevation in

comparison with the variation seen in the 28-variable study. Wing lift-improvement

results for the 8-variable case are summarized in Table 5.3. The lift increase of

approximately 2.6 percent was obtained in eight optimization steps; both constraints, as

well as the side constraints on four of the eight design variables, are active. Comments

similar to those made about the previously shown sample studies also apply to the CPU

times for this case.
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(a) - BASELINE HSCT24E WING.

(b) - FINAL HSCT, 28 VARIABLE DESIGN.

(C) - FINAL HSCT, 8 VARIABLE DESIGN.

Fig. 5.4 Camber contours of wing camber surface elevations

(contours of constant Zc) for HSCT lift-improvement studies.
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5.2.3 Lift Improvement: Flap-Deflection Variables

In MDO applications, all CFD solutions should be provided for at least an approxi-

mately deflected and a trimmed configuration. As a first step in this multiple discipline

interaction, the static balance and trim control-surface deflections should be investigated

for advanced CFD code solutions. Four outboard flaps were defined as part of the baseline

HSCT 24E wing; these are shown in Fig. D2 in Appendix D for the design. Typically,

the flaps would be "designed" at low-speed flow conditions with takeoff and landing. At

high-speed flow conditions, they might be deflected for trim and control purposes. An

indication of their effectiveness for lift improvement on the HSCT 24E is demonstrated

by the sample results shown in Table 5.4. The objective and constraint functions are the

same as in the other lift-improvement studies; here, Table 5.4 shows that a 1-percent lift

increase is obtained in five optimization steps and both constraints are active. Initial and

final values of the scaled flap deflections are shown in Table 5.4.

Table 5.4 shows that the flap deflection SD's for these outboard flaps are rather small

in comparison with the SD's for some of the other geometric design variables. As a

result, no attempt has yet been made to trim the pitching moment for the HSCT 24E.

Two studies were done, however, on a delta wing for which larger inboard and outboard

flaps were defined. In the first study, a lift improvement of 1.2 percent, with bending

moment and drag constrained, was obtained in five optimization steps. In the second

study, the pitching moment was changed approximately 8.6 percent in six optimization

steps, with bending moment, lift, and drag constrained.

5.2.4 Lift Improvement: Wing Planform Design Variables

Planform optimization should be accomplished as a MDO study because input from

other disciplines is required. Therefore, planform optimization is typically done (1) early

in the design cycle at the conceptual or early preliminary design stages in which these

other disciplines participate and (2) with linear aerodynamic codes. Generally, several

(or more) discrete plantbrms are selected, and section variables are then optimized for
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eachplanform study. In the samplecasepresentedin this section,lift optimization for

constrainedwing bendingmomentanddrag hasbeendonewith five planformvariables

(thoseshown with solid arrows in Fig. D1 in Appendix D); all other design variables

were held at their baseline HSCT 24E values. In the next section, samples of the more

conventional camber optimization for different planforms are given and discussed.

Results for lilt optimization with respect to five planform variables are given in

Table 5.5. A minimum (perhaps a local minimum) has been found in four optimization

steps with a lift improvement of 5.5 percent and the drag constraint violated by 3.8

percent. Neither the wing bending-moment constraint nor any of the design-variable side

constraints are active or violated.

The baseline and optimized planforms are shown in Fig. 5.6. For supersonic flow

considerations alone, the wing tip should be swept more than in the baseline HSCT 24E:

Fig. 5.6 shows that the optimization procedure is in agreement with this result. At a

Mach number of 2.4, the Mach angle is 24.6 °. The angle subtended by the wing-tip

leading edge from the root leading edge is 25.9 ° for the baseline HSCT 24E and 23.80

for the final optimized planform, as depicted in Fig. 5.7. That is, the planform optimized

for only supersonic flow lies behind the Mach cone.

Plantorm optimizations with other objectives (e.g., drag minimization or lift to

drag ratio maximization) and different design variables have been completed; however,

comprehensive conclusions cannot yet be drawn. In particular, for the optimization results

just presented, the planform area changed. In the present study, the geometry and grid-

generation codes have not been differentiated with respect to planform area in order to

constrain it formally in the optimization. For the double trapezoidal wing planform, this

can be done with the three wing chords and two wing spans held fixed, which 'allows only

the inboard and outboard wing panel sweeps to change. (See Fig. D1 in Appendix D)
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Bamline ///'_ / 7

Fig. 5.6 Planform design improvement at cruise condition.
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5.2.5 Lift Improvement: Camber Variables, Various Planforms

Two planforms that differ from the baseline HSCT 24E were selected for camber

optimization studies to improve lift, subject to constrained wing bending moment and

drag. The two planforms were a clipped delta wing and a clipped arrow wing with

planform area and root chord equal to those for the baseline HSCT 24E. The tip chord

for these two clipped planforms was 1/10 of the HSCT 24E tip chord. The leading-edge

sweep of the arrow wing was taken to be that of the inboard panel of the HSCT 24E.

These three planforms are shown in Fig. 5.8.

A summary of the camber optimization study for the three planforms is given in

Table 5.6. The results for the HSCT 24E are those given in Table 5.2 for the 28-variable

case; these results have already been discussed in detail. Lift improvement and active

constraints occur for all three planforms. The resulting camber surface for the delta wing

is rough, as for the HSCT 28-design-variable case previously discussed. The camber

surface for the arrow wing was not nearly as rough; however, only three optimization

steps were taken. Comments similar to those made previously about the HSCT camber

optimization also apply to the CPU times for these two clipped planform studies.
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(a) - BASELINE HSCT24E WING

(b) - DELTA WING

(C) - ARROW WING

Fig. 5.8 Comparison of various planforms for lift-improvement studies.
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Table5.1 (a) Wing ThicknessOptimizationStudy: Design-ImprovementSummary
with 15DesignVariablesfor HSCT 24E at M_ = 2.4, a = 1°, and/3 = 0 °

Initial Final % Change

Objective (C×) 1.9361 E-03 1.7311 E-03 -10.59E+00

Constraint I (CM+) 8.4735 E-04 8.4735 E-04 +0.55E-03"*

Constraint II (Cz) 1.9086 E-02 1.9087 E-02 +0.68E-02"*

Number of function

evaluations 1 117

Number of gradient
evaluations 1 8

CPU time (sec)* 267 4369

* Run time on Cray-2 for reduction of 60M in analysis and SD residuals at every
evaluation.

** Active constraint or side constraint on design variable.
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Table5.1 (b) Wing ThicknessOptimizationStudy: ScaledDesign-VariableChanges

Designvariable Initial value Final value % change

Root I 3.6811 3.2830 -10.8

Break I 4.0288 2.8481 -29.31

Tip I 4.0288 2.1917 -45.60**

Root B 4.8950 5.8788 +20.10

BreakB 6.1160 8.6057 +40.71

Tip B 6.1160 8.9049 +45.60**

Root t/C 2.9710 2.8824 -2.98

Break t/C 2.5000 2.4141 -8.59

Tip t/C 2.5000 1.3084 --47.66**

Root Xm 6.0000 5.0874 -15.21

BreakXm 5.0000 4.5458 -9.08

Tip Xm 5.0000 4.1718 -16.56

RootTau 4.1830 2.1763 -47.97**

BreakTau 2.8980 1.5078 -47.97**

Tip Tau 2.8980 1.5765 -45.60"*
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Table5.2 (a)Wing CamberOptimizationStudy: Design ImprovementSummary
with 28 DesignVariablesfor HSCT 24E at M_ = 2.4, _ = 1°, and/3 = 0°

Initial Final % Change

Objective(Cz) 1.6446E-02 1.7584E-02

ConstraintI (CMx) 4.0315E-04 4.0228E-04

ConstraintII (C,,) 2.0253E-03 2.0259E-03

Numberof function
1 136evaluations

Numberof gradient
evaluations 1 9

CPU time (Sec)* 400 6676

+6.92

-0.22**

+0.03**

* Seenote at Table 5.1.
** Seenote at Table 5.1.

Table5.2 (b) Wing CamberOptimizationStudy: ScaledTwist Design-VariableChanges

Wing station Initial value Final value % change

3 9.6 4.820 -49.79**

4 8.22 4.110 -50.00**

5 1.425 0.998 -42.70

6 1.714 0.999 -41.72

7 1.780 1.637 -18.33

8 (break) 1.493 1.624 +8.77

18 (tip) 2.660 3.990 +50.00**
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Table 5.2 (c) Wing CamberOptimization Study:
ScaledCamberDesign-VariableChanges

Wing station Initial value Final value % change

3 2.780 4.163 +49.75**

4 2.684 3.425 +27.61

5 2.371 1.187 -49.94**

6 1.952 0.976 -50.00**

7 1.508 0.754 -50.00**

8 (break) 1.028 0.514 -50.00**

18 (tip) 1.640 1.977 +20.61

Table5.2 (d) Wing CamberOptimizationStudy:
Camber-InflectionDesign-VariableChanges

Wing station Initial value Final value % change

3 2.092 1.047 -49.95**

4 1.557 0.780 -49.90**

5 1.228 1.842 +50.00**

6 9.944 4.986 -49.86**

7 7.738 11.607 +50.00**

8 (break) 5.722 8.565 +49.69**

18 (tip) 8.572 12.591 +46.89**
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Table5.2 (e) Wing CamberOptimizationStudy: Scaled
Maximum-Camber-LocationDesign-VariableChanges

Wing station Initial value Final value % change

3 4.000 5.994

4 4.000 5.996

5 4.000 2.003

6 4.000 2.000

7 4.000 2.000

8 (break) 4.000 2.000

18 (tip) 5.000 2.500

+49.85**

+49.90**

-49.90**

-50.00**

-50.00**

-50.00**

-50.00"*
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Table5.3 (a) Wing CamberOptimizationStudy: Design-ImprovementSummary
with 8 DesignVariablesfor HSCT 24E at Mo_= 2.4, a = 1°, and _ = 0°

Initial Final % change

Objective(Cz) 1.5186E-02 1.5578E-02

ConstraintI (CMx) 2.9336 E-04 2.9338 E-04

Constraint II (Cx) 2.0496 E-03 2.0498 E-03

Number of function
1 105

evaluations

Number of gradient
evaluations 1 8

CPU time (sec)* 137 2978

+2.58

+0.49 E-02**

+0.75 E-02**

* See note at Table 5.1.

** See note at Table 5.1.

Table 5.3 (b) Wing Camber Optimization Study: Design-Variable Changes

Design variable Initial value Final value % change

Break ZTE 1.4930 1.3318 -10.80

Break A 1.0283 0.9914 -3.59

Break E 5.7222 6.0098 +5.03

Break XMA 4.0000 2.2021 -44.50

Tip ZTE 2.6600 4.7880 +80.00**

Tip A 1.6400 2.9520 +80.00**

Tip E 8.5717 15.4290 +80.00"*

Tip XMA 5.000 9.000 +80.00**

** See note at Table 5.1.
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Table 5.4 (a) Wing Flap-DeflectionOptimizationStudy: Design-Improvement
Summarywith 4 DesignVariablesfor HSCT24E at Mo_= 2.4, cr = 1°, and _3 = 0 °

Initial Final % change

Objective (Cz) 1.9087 E-02 1.9309 E-02

Constraint I (CMx) 8.4736 E-04 8.4727 E-04

Constraint II (Cx) 1.9361 E-03 1.9361 E-03

Number of function
1 76evaluations

Number of gradient
1 5

evaluations

CPU time (sec)* 99 1581

* See note at Table 5.1.

** See note at Table 5.1.

+1.17 E+00

-0.10 E-02**

+0.63 E-05**

Table 5.4 (b) Wing Flap Deflection Optimization Study: Scaled Design-Variable Changes

Flap number Initial value Final value

I 0 -2.4125

II 0 + 0.2644

III 0 +10.000

IV 0 -1.7263
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Table5.5 (a) Wing Plan/brmOptimizationStudy: Design-ImprovementSummary
with 5 DesignVariablesfor HSCT 24E at Moo= 2.4, a, = 1°, and13= 0°

Initial Final % change

Objective(Cz) 1.9086E-02 2.0133E-02

ConstraintI (CMx) 8.4736E-04 8.4153E-04

ConstraintII (Cx) 1.9361E-03 2.0104E-03

Numberof function
1 102evaluations

Numberof gradient 1 4
evaluations

CPU time (sec)* 132 2701

+5.5

-0.69

+3.83***

* See note at Table 5.1.

*** Constraint violated.

Table 5.5 (b) Wing Planform Optimization Study: Scaled Design-Variable Changes

Design Variable Initial value Final value % change

Root chord 1.420 1.456 +2.52

Break chord 4.236 4.269 +3.24

Tip chord 9.303 1.488 -84.00

X break Leading Edge 9.965 10.358 +3.94

X tip Leading Edge 13.840 15.263 +10.28
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Table5.6 Wing CamberOptimizationStudy: Summary
for VariousPlanformsat M_ = 2.4, a = 1°, and /3 = 0 °

Objective (Cz), %

Constraint I (CMx), %

Constraint II (Cx), %

Number of function

evaluations

Number of gradient

evaluations

CPU time (sec)*

* See note at Table 5.1.

** See note at Table 5.1.

HSCT DELTA

+ 6.92 +5.17

-0.22 E+00**

+0.32 E-01**

-0.52 E-04**

+0.81E-01**

ARROW

+3.23

-0.68 E+00

+0.43 E+00**

136 150

9 9

6676 6888

53

3

2760



Chapter 6

SUMMARY AND CONCLUSIONS

The Incremental Iterative Method (IIM) is developed to calculate consistent, discrete

sensitivity derivatives (SD's). The method is successfully implemented in the calculation

of consistent, discrete SD's for the two-dimensional (2-D) thin layer Navier-Stokes

equations and the three-dimensional (3-D) Euler equations. The lift-corrected far-field

boundary condition is implemented in the 2-D aerodynamic analysis code and sensitivity

analysis (SA) code.

The SD's obtained in two dimensions with the direct-differentiation and adjoint-

variable approaches are compared with SD's from finite differences for accuracy and

efficiency. Not only do the results from these two methods compare well with those

from the finite-difference approach, they are computationally less expensive to obtain. In

two dimensions, these methods are applied to two example airfoil problems: subsonic

low-Reynolds-number laminar flow and transonic high-Reynolds-number turbulent flow,

for which the three geometric design variables and three nongeometric design variables

(Mach number, angle of attack, and Reynolds number) are considered. The SD's obtained

for the turbulent flow case do not agree "exactly" with the finite-difference results, as

expected, because the differentiation of the turbulence terms is neglected due to the

complexity of these terms; for the most part, this error was small, but in a few cases,

it was significant.

The SD's obtained in three dimensions with the direct-differentiation approach are

compared with finite differences for accuracy and efficiency. In three dimensions, this
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procedureis demonstratedon the High-SpeedCivil Transport (HSCT) configuration

generatedat NASA Langley ResearchCenter, and SD's are obtainedwith respectto

threenongeometricdesignvariables(Machnumber,angleof attack,andyaw angle)and

many geometricdesignvariables.

After successful implementation of the I1M in two and three dimensions, these SD's

are used in a gradient-based design optimization. Planform, thickness, and camber design

improvement studies are done for the HSCT 24E for a supersonic cruise condition with

efficiently calculated SD's via the IIM. Remarks in regard to the design-improvement

study are summarized as follows:

1. Formulation of the optimization problem is critical. Based on how a problem is

posed, the optimization procedure may give completely different answers.

2. An optimization procedure that uses local exact derivatives should not take large

step sizes in the design variables.

3. A certain degree of robustness is required in all steps of the optimization. For

example, in the present study, the surface/volume-grid generation procedure failed to

generate the grid for certain shapes generated by the optimizer.

This IIM is very general and can be easily implemented in any existing CFD code

to obtain SD's. Approximations of convenience can be introduced in the matrix operator

and thus the same solver that is used for aerodynamic analysis can be used for the SA.

Tools like ADIFOR can be used to construct the right-hand side of the sensitivity equation

in incremental iterative form. This method currently is being implemented in TLNS3D,

for example to calculate SD's. Furthermore, efforts are underway at Argonne National

Laboratories to construct a template that can differentiate any CFD code with the IIM.

The design-package code developed in this study can be used for static balance

and trim control of the HSCT 24E configuration, in which the objective is to stabilize

the configuration with flap deflection as the design variable. This design-package code
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can alsobe coupledwith a finite-elementstructurescodefor aeroelasticstudiesand for

multidisciplinary designoptimizationstudiesin which structuresandaerodynamicsare

treatedasseparatedisciplines:this effort is currentlyunder investigation.The marching

Euler code,equippedwith the capabilityto calculateefficientSD's can "also be used for

shock-wave propagation and sonic boom studies for the HSCT 24E configuration. The

single-block marching Euler code developed in this study can be extended to a multiblock

version with the added capability to perform viscous calculations. The viscous terms can

be differentiated with ADIFOR, and the resulting differentiated code can be coupled

with the existing hand-differentiated code, MARSEN (marching Euler sensitivities), to

calculate the SD's.

Currently, the linearized system for aerodynamic analysis and the linear system for

SA are solved with the spatially split approximate factorization algorithm. To further

improve efficiency in solving the linear system, a Krylov-subspace-based method, such

as the Generalized Minimal Residual (GMRES) solver, can be added to the existing

code. As an additional future application, the IIM can be used on unstructured grids to

calculate SD's: unstructured grids can be used more easily than structured grids to model

complicated geometries such as the HSCT 24E.
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APPENDIX A

GOVERNING EQUATIONS IN CURVILINEAR COORDINATES

The governing equations in the present study in three dimensions are the inviscid,

compressible, unsteady Euler equations given in generalized curvilinear coordinates as

follows:

(A.1)

where

= 7 = pv p = F' /pUv+ ¢,p/
' J = /pUw+_'-P/

1.(e + p)U j

pVu + r/x p pWu + _xP

-- (] -- ]pVv + r/yp/' _ _- H = / pwv + (yP [

J /pVw+v,.p / J |pW,v + ¢',p/
L (e + p)V J L (e + p)W J

U = _xU + _yV + _zw

V = r/xu + T/yV + rlzW

W-'- (xll + ¢yV q- _'Z W

above J is the Jacobian of the transformation from the Cartesian coordinates (x,y,z)

to the generalized curvilinear coordinates (_,r/,O, where _ corresponds to the streamwise

direction, 77corresponds to the circumferential direction, and ( corresponds to the direction

normal to the body surface. The conservation laws of mass, and momentum in the X, Y,

and Z directions and the energy equations are expressed symbolically in Eq. (A.I).
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In the present study, the governing equations in two dimensions are the unsteady,

compressible thin-layer Navier-Stokes equations given as

(A.2)

where

Q , _= F pUu+_xp

Q=J-: [?J ]- = ]pUv+_yp
L(e+p)U

a =---G = pVu+qxp _tl /z |g._v2|

a IpVv+.rp , -v = _ I@|
k (e+p)V kgv, J

and

A

gv2 = alU¢ + aav¢

gv3 = aau( + o_2v(

1 1

_v,= _,_,(u_)c+ _,_2(v_)c+ ,_(_v)c+ or4

Pr(7 - i) (a2) ¢

'_' = +_T)' ,_2= +_T

a

The molecular viscosity is calculated with Stokes's hypothesis, a is the speed of sound, Pr

is the Prandtl number (Pr = 0.72), and ReL is the Reynolds number. The nondimensional

molecular viscosity is calculated with Sutherland's law and a reference temperature Too,

which is the static temperature of the tree stream. For turbulent flow calculations, the

algebraic turbulence model of Baldwin-Lomax is used to calculate the turbulent viscosity.
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APPENDIX B

LINEARIZATION OF FAR-FIELD BOUNDARY

CONDITIONS FOR LIFTING AIRFOILS

The far-field boundary conditions used in this study are Riemann invariants. In

this appendix, a procedure is outlined to linearize the far-field boundary conditions; this

procedure is extended to include the lift-corrected far-field boundary condition.

The nonlinear residual expression on each boundary cell face can be written

symbolically as

{RB(QB(/_), QIP(3),)(I(_),/3)} = {0} (B.1)

where {RB } is a four-component vector written as a function of the state variables on the

boundary cell face QB, state variables at the first interior point Qn,, local grid coordinates

)(1, and explicit dependence on the design variables 3. The two relationships enforced

at each boundary cell face are given as follows (two components of {RB}):

(B.2)

where 1R is the outgoing Riemann invariant and 2R is the incoming invariant. With

these Riemann invariants, the local velocity lJ B and the local speed of sound aB are

calculated as follows:

1R+2R
lJ B =

2

(1R- 2R)(_ - 1)
a13 = (B.3)4
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Based on the value of the local velocity 15B, 3R and 4R (the third and fourth

components of {RB}) are enforced with the tangential velocity x) and the entropy S

as shown in Eqs. (B.4), where lJ B > 0 indicates the outgoing flow and 1) B < 0 indicates

!_B > O,

3R => VB-- gIP = 0,

4R=> SB--SIp =0,

liB<0

3R => "V'B -- _'oo = 0

4R=> SB-S_o = 0

(B.4)

the incoming flow. Here, the subscripts B, IP, and ec represent flow-field quantifies on

the boundary, on the first interior point, and for the free-stream, respectively.

By taking the derivative of the Eq. (B. 1) with respect to the design variable /3k in

the following equation results:

dRB "_
j = {0}

0QBJ{d/_k J q-[OQIpJ{ d_k J+ [0XlJ[_k} -]- {0/3k J = {0} (B.5)

[0RB] [0___.R] is a 4x2 Jacobian matrix.where LOQBJ[0RB]and LOQ,pj are 4x4 Jacobian matrices and LOX, J

Here, the term { _-_-_k} represents the grid-sensitivity vector. The vector {_}is nonzero

if the residual expression is explicitly dependent on the design variable /3k. Calculation

of the expressions in Eq. (B.5) is straightforward and is not discussed here.

The lift-corrected far-field condition discussed in Ref. [61] has a distinct advantage

because accurate force and moment coefficients can be calculated with a reduced extent

of the far-field boundary. The use of the "point-vortex" correction to improve the

far-field boundary condition is straightforward to implement in an explicit sense. Its

explicit implementation involves the use of a point-vortex (centered at the quarter-chord)

representation of the airfoil, where the strength of the point vortex (i.e., the circulation

F) is proportional to the lift coefficient CL of the airfoil. The purpose of this point vortex

is to more accurately model the influence of the lifting airfoil on the velocity field in the
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vicinity of the far-field boundaries(comparedwith the alternativeof assuminga free-

streamvelocity field here),which resultsin moreaccurateairfoil calculations,particularly

as the extentof the far-field boundaryfrom the airfoil is decreased.

The implementationof this point-vortexcorrectionresultsin a numericalcoupling

of the far-field boundary-conditionequationsto (throughthe lift coefficientCL) the field

variablesand also to the (x, y) grid coordinateson and adjacentto the surfaceof the

airfoil. As a consequenceof this coupling betweeneachfar-field boundarycondition

equationandthefield variablesandgrid pointsonandadjacentto thesurfaceof theairfoil,

'algebraically,complexadditionsarenecessaryto theglobalJacobianmatrix [_-_] (which
OR

destroys the banded matrix structure) and also to [a--g;]. To avoid the task of explicitly

deriving these terms and their precise locations in these Jacobian matrices, a simplifying

strategy is proposed.

Equation (B. 1), with lift-coefficeint CL as the additional field variable, is written as

{RB(QB(3), QIp(/_), Xl(/_),/_, CL) ) = {0} (B.6)

The second and third components of Eq. (B.6) are different from Eq. (B.1), and the

remaining two components of this four-component residual expression are the same. Only

these two components are different because of the involvement of free-stream quantifies,

which are redefined with the lift-corrected far-field boundary condition. The free-stream

quantities _oo, _oo, and _'oo are defined for the lift-corrected far-field boundary condition

as

F

3oo = cosa + Fsin0

_oo = sin,_ - FcosO

CL ,, CV/1 2 1
4rr - M°° 711 - M_sin(0 -

K_ = h0oo 2 (7 - 1) (B.7)
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where r and 0 are the radius and polar angle in the physical plane, bloc is the free-stream

Mach number, cr is the angle of attack, 7 is the ideal gas constant, C is the chord of

the airfoil, and h0oc is the stagnation enthalpy. The polar angle is defined as positive

counterclockwise from the chord line downstream of the airfoil quarter-chord. The speed

of sound _ is determined by ensuring that the total enthalpy is constant. Here, the

modified free-stream quantities are represented with '-' The sine and cosine of the

polar angle can be calculated as

/_V
sin 0 = ---=

r

Ax
COS 0 "--

r

where

/kx = Xp - Xo, Ay= yp -- Yo

1 1

Xp = _(Xl H- x2), Yp = _(Yl + Y2)

r = V/(/Xx) 2 + (Ay) 2 (B.8)

above, the quantities (Xo, Yo) represent the aerodynamic center of the airfoil. For the

present study, xo = C/4 and Yo = 0, where C is the chord of the airfoil. Quantities (xp,

yp) represent the coordinates of a cell face, calculated by taking the average of the edges

of the cell face. If we substitute for sin0 and cos0 in Eq (B.7) the following equation

results:

_ = cosa + CLAy( v/1 --M_'_f-'j

V_ = sina + CL(--Ax)( V/_' - M_f_a (B.9)
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where

2 • o
f (1 M_sm'oe)Ax 2 + (1 2 "= -- -- Moocos'a)Ay 2 + (2M_ sin cr cos cr)AxAy

If we differentiate Eq. (B.6) with respect to the design variable /3k, the result is

]
O--Q-_BJ ld_-k J + + l-b--_k S

f ORB

-(0) (B.IO)

The additional term in Eq. (B.10) compared with Eq. (B.5) is I ocL J_T_t'flk• The four-

component vector { _ } can be easily computed because the explicit dependence of

{ RI3 } on CL is known. The term _d_k is a scalar term that represents the sensitivity of

the lift coefficient with respect to the design variable 3k- Throughout the remainder of this

appendix, geometric design variables are discussed because the analytical expressions are

not as straightforward to obtain in comparison with the expressions for the nongeometric

design variables.

Here, the second and third components of Eq. (B.10) are discussed because of

the complexity involved in calculating _,_'_, and_. The second component of

Eq. (B.10) can be written as shown below:

where

d2R dR B dR_

dflk- d/3k d/3 k (B.11)

The derivative of _
d_k Can be calculated analytically; the term _ involves the metric

terms Ml and M2 as well as the free-stream velocities _oo and Voo and their derivatives.

_t _t

These derivatives u_ and vo_ are given as

( ) 'oo= ¢Lx/ - ML (Ay) f,
47r f

' _ -' fM2 Too
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t

VO 0

(AX)y = 0,
/

(Ax) x = yp,

) F(-Ax)'---T-- +
t

(AV)v_=yp

('&Y)x = 0

fx (1 2 " 2 '= -- Mocsln ol)2Ax/X.x + 2M_ sin a cos a AyAx

9 ¢ ¢

fy = (1 - M_cos-o_)2/_y_y + 2M_ sino_cosa/_xz_y (B.12)

The derivatives of _o_ and Voo with respect to x and y can be obtained by substituting the

corresponding derivatives of Ax, Ay, and f as shown below. For example, the derivative

of _o_ with respect to x can be shown as

0_O_Ox- CLV/1 --M_4r - M_sin2a" + 2MO sinac°s°_/kY'Xp

(B.13)

where the derivatives of f and Ay with respect to x are substituted in the expression
,....t

for u_.

The third component of Eq. (B.10) can be written as

3R=> VB--Vco =0 (B.14)

where 'V'B and Voo are tangential velocities on the boundary and at the free stream. The

velocities VI3 and V_ can be calculated as

VB = M2UB -- MIVB

_roo = M2uoo - Ml_oo (B.15)

where Ml and M2 are metric terms and u B and v B are the Cartesian components of

velocity on the boundary cell face.
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If we differentiate Eq. (B. 14) with respect to the design variable '3k, then the following

equation results:

daR d'V'13 dV_

d/3k- d_3k d_3k (B.16)

In Eq. (B. 16), the term _ is straightforward to obtain. Derivatives of Vo_ with respect

to the design variable 3k can be obtained by differentiating the expression for {too

from Eq. (B.15), where the derivative quantities uoo and voo are calculated as shown

in Eq. (B.12).
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APPENDIX C

ADJOINT VARIABLE FORMULATION FOR MARCHING

EULER PROBLEMS IN THREE DIMENSIONS

In this appendix, the adjoint-variable approach to calculate SD's is outlined for the

Euler equations in three dimensions with a space marching algorithm. This procedure

has not yet been implemented in the present study. The system response C is augmented

with the product of the Lagrangian multiplier h i and the residual Ri (where i corresponds

to the i th cross plane in the streamwise direction) as

C C + ATRi(Q_ (f)), Qi_l (/3) * -= * , Qi_2 (fl), )(, /3) (C.1)

At steady state, Ri clearly is equal to zero. Here, Q_,Qi*-I, and Qi*-2 represent the

steady-state field variables in the i, i- 1 and i -2 cross planes, respectively, and the j

and k indices are suppressed. If we differentiate Eq. (C.1) with respect to the design

variable /3k, the following equation results:

da--"k= _1 _ .... +/0QiJ / d3k J ..... + 0Q--7£max d3k

+aT(fOR,]{_}+rOR,]fdQol rOR,]dX f0R,

d *\[0Qi] d& J

k Lox J { _ }

'Jl'- ...................................

+ Aimax 0Qimax J d_k

r 0Ri] d * r 0Ri] d *+[oqQi_lj{d/_kQi-1}+[_--_i-2]{ d/_kQi-2})
fORiq--iO_k})

"ORim_x] dS[
q- 0ff{ ]{_k} q- { 0Rimax0_k })

(C.2)
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In Eq. (C.2), the termsthat correspondto the first crossplane, the i th cross plane, and

the imax cross plane (imax is the number cross planes in the i direction) are given: the

reason for showing these terms in the equation becomes clear later in this appendix. The

Jacobian matrix lax j is a sparse, banded matrix and is calculated as [°o---_] -g-ff , where

M is the metric term. The derivative of the residual expression with respect to the metric

terms is straightforward and is not given here. More details in regard to the construction

of this Jacobian matrix are given in Ref. [35]. Contributions from boundary conditions

are included in the above Jacobian matrix, which are essential for calculating accurate

SD's. The term _ is the grid-sensitivity vector, which is discussed in detail in

Chap. 3. As can be seen from F-xt. (C.2), necessary adjustments are needed when i = 1

and the flow variables that correspond to the free stream are used for Qo. In Eq. (C.2),

0Ri] is the implicit Jacobian matrix discussed in The [ox] (_--_k)OQi] Chap. 2. term [aFro] aX is
%,#

nonzero if the design variable is geometric, and the term { _-_ } is nonzero if the design

variable is nongeometric. By rearranging Eq. (C.2) and collecting terms that correspond

to the sensitivity of the flow variables, we obtain

T fdx'_ OC
__{ O0C 'max foqR i

L001J LOQ, J [Oo_ J

{d *}( [ori] [or,+1] T 7"oc'1,T']Qi AT + )_i+l --I-/_i+2 Jr-

+ _ [oq_J L_J [ OQi J t OQiJ )

dflk } )_ima'x [_] -P { igQ-_m.x } (C.3)

{d .}In Eq. (C.3), if we set the coefficients of _ to zero, the following equation results:
d3k

{ } { } imax (roRi] { dX } _ ORi })

dC OCT dX OC

- + + + (c.4)
' i=l \LOXJ _ tO3k

where the adjoint vectors are solved with Eq. (C.5).
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r_RllT r_R_lT r_R31T {_}-Lo---Q-TjA,= LO-_'_J A;+ LOQIJ A3+

- LOQiJ Ai = Ai+l + Ai+ 2 +L OQ_ .I L-b-Q-SiJ

[_Rim.xlT{_C}OQim_xJ Aimax ----- OQimax
(C5)

As can be seen from Eq. (C.5), we must solve for the adjoint vectors backwards (i.e.,

we solve for )qmax first and use it to solve for Aimax-1 and so on). Equation (C.5) can

be cast in incremental form. The incremental form to solve for )_i is given as a two-step

procedure in Eqs. (C.6a) and (C.6b):

OQiJ AAi= Ai + Ai+l+ Ai+2+- taQiJ t_J L OQi J
(C.6a)

{A re+l) _-- {A m } + {mAAi}

m = 1,2,3... (C.6b)
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APPENDIX D

WING-GEOMETRY PARAMETERIZATION

The baseline HSCT 24E wing-geometry parameterization of Ref. [81] was divided

into three types: 7 planform variables, 15 section-thickness variables (5 each at the

root, break, and tip section), and 20 camber surface variables. These camber surface

elevation variables were simply the coefficients in a monomial product expansion of 20

terms, such as a(X) n (2--_b) m. In the present work, the camber parameterization has been

changed from that shown in Ref. [81]; however, the parameterization for the planform

and thickness variables have been retained.

The HSCT 24E geometry generated at NASA Langley Research Center resulted from

a multidisciplinary preliminary design based on linear aerodynamic codes; the geometry

is given in the wave-drag format. The wing is described at 18 span stations, which

are located as shown in Table D1. The seven planform variables required to describe

the double trapezoidal wing used in Ref. [81] are defined in Table D2 and Fig. D1.

The inboard- and outboard-span variables are shown with dashed arrows because they

are not involved in any present optimization studies. Because the HSCT 24E wing-

thickness distribution was linearly lofted from root to break and from break to tip, a

thickness parameterization is required only at these three wing stations. The thickness

parameterization used in Ref. [81] and in this work is defined in Table D3.

The HSCT 24E wing camber surface is described in the wave-drag, or Hams, format

by 20 chordwise entries at each of the 18 span stations (i.e., 360 parameters). In the

present work, the camber has been described at each wing station so that twist and both

leading- and trailing-edge flaps can be included. Locations of the four outboard flaps

on the HSCT 24E are shown in Fig. D2. The twist, camber, and flap parameterizations
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aredefinedand shownin TableD4, Fig. D3, andFig. D4. This presentparameterization

requiresthe 72 (18x4) cambervariablesto approximatethe HSCT 24E wing camber

surfaceelevation;this representationis better than that obtainedwith the representation

with 20cambervariablesgivenin Ref. [81]. Additionalspanwisecontrol (or smoothing)

is requiredto model the flapsandfor the optimizationdesign-variablechangesdiscussed

in the text.
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TableD1 HSCT 24E Wing-SectionLocations

Wing section % distance"alongthe spanfrom side of fuselage

1 (Root)

2

3

4

5

6

7

8 (Break)

9

l0

ll

12

13

14

15

16

17

18 (Tip)

0.00

5.94

11.88

17.82

23.77

29.71

35.65

42.44

47.53

53.47

59.42

65.36

71.30

77.24

83.18

89.12

95.06

100.00
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Table D2 Planform Parameters

RC

BC

TC

XBC

XTC

IS

OS

Rootchord

Breakchord

Tip chord

X - locationof leadingedgeat break

X - locationof leadingedgeat tip

Inboardspan

Outboardspan

Table D3 ThicknessParameters

I

B

t/C

Xm

TAU

Leading-edge radius parameter, R0 = 1.1019 • [(I/6.0) • ,2]

Curvature forward of airfoil maximum thickness

Thickness to chord ratio

Location in (x/C) of airfoil maximum thickness

Thickness trailing-edge half-angle

Table D4 Camber and Flap Parameters

ZTE

A

E

XMA

XHL

0L

XHT

0T

Twist

Camber

Camber inflection

X/C location of maximum camber

X/C location of leading-edge flap hinge

Deflection of leading-edge flap

X/C location of trailing-edge flap hinge

Deflection of trailing-edge flap
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APPENDIX E

AUTOMATIC DIFFERENTIATION

An AD tool is a chain-rule-based technique for differentiating an output function of

a program with respect to some specified input parameters. This technique is as old as

programmable systems [84]. This AD tool relies on the technique that every function is

calculated on a computer by executing some basic operations such as addition, subtraction,

and multiplication. Principally, two modes exist in automatic differentiation: the forward

mode and the reverse mode (which closely resembles the adjoint approach with a low

operation count and a large computational memory requirement).

An AD tool computes derivatives within the accuracy of the original function, unlike

divided differences. These tools differ from a symbolic manipulator in that the operation

count and memory are bounded a priori in terms of the complexity of the original code.

Calculation of the SD's by hand differentiation is not feasible for complicated CFD

codes. For example, the differentiation of turbulence models by hand-differentiation is

not feasible, and failure to consistently differentiate these terms results in inaccurate SD's

as shown by Korivi et al. [42]. Hand differentiation is error prone and requires a lot

of time to construct the differentiation code; on the other hand, automatic differentiation

constructs accurate derivatives of very complex codes in a very short time. In the near

future, usage of these codes may become routine for computing derivatives accurately

and efficiently; this tool can be used judiciously to obtain SD's. (The case of using an

AD tool to obtain SD via the IIM is discussed later.)

The AD source tool used in the present study, ADIFOR (.A.utomatic DI.__fferentiation

of FORTRAN) [86-88], is jointly developed by Argonne National Laboratories and

Rice University. The ADIFOR tool differentiates any specified FORTRAN program
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output with respect to any program input parameters and uses a hybrid mode of forward

and reverse modes of AD: ADIFOR is a general-purpose tool that supports almost

all of FORTRAN 77 and is based on the ParaScope FORTRAN environment. The

differentiation of a FORTRAN program output with respect to an input parameter using

ADIFOR produces a FORTRAN code that computes the derivative of the function and

also computes the function itself upon execution of the resultant code. The original

program vectorization and parallelization are preserved and supports the error exception

handling routines. The Jacobian matrix is computed with the low-memory-based seed

matrix concept. The number of columns in the seed-matrix is the number of design

variables. More details in regard to how ADIFOR handles sparsity are given in Ref. [87].

The ADIFOR tool has been applied to various Fortran codes to obtain SD's from

advanced CFD codes. Bischof et al. [89] and Green et al. [90] applied ADIFOR to

TLNS3D to obtain accurate SD's with respect to turbulence modeling parameters and

nongeometric design variables. The application of ADIFOR to an iterative algorithm

is demonstrated in these studies. The application of ADIFOR to an iterative procedure

such as

X,,+1 = X n _ p-1 , R (E.1)

(which is a common iterative procedure in any CFD code, where P is the preconditioner,

R is the residual, and n is the iteration index) results in the following iterative procedure:

¢ ¢

X'n+l = x'n _ (p-l) , R- p-I, R (E.2)

where the derivative of the preconditioner (p-l)' is "also caiculated. This iterative

procedure is used to compute derivatives from a differentiated version of TLNS3D.

However, in Eq. (E.2) the derivative of the preconditioner is computed and multiplied

by the residual at each iteration. This can be avoided because R is equal to zero at

steady state. Bischof et al. [89] suggested the deactivation of certain parts of the

differentiated program to calculate the derivatives. This step needs user intervention
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and is not automatic.Newmanet al. [43] suggestedthat the useof ADIFOR with the

IIM resultsin anaccurateandefficientevaluationof derivativeswhereonly thederivative

of the residualis computed.The preconditionerusedfor the SD evaluationis the same

as that used for the analysis. Shermanet al. [91] applied ADIFOR via the IIM to

computefirst- andsecond-orderderivativesfrom a Navier-Stokescodewith analgebraic

turbulencemodel. The SD's computedwith respectto geometricand nongeometric

designvariablescomparewell with thosecomputedwith finite differences. Korivi et

al. [60] and Greenet al. [77] appliedADIFOR to an algebraicgrid-generationcode

to computethe grid sensitivity and successfullyobtainedthe SD's with respectto the

geometricdesignvariables.




